• ISSN 1000-0615
  • CN 31-1283/S

n-3/n-6 HUFA对许氏平鲉幼鱼生长、体组成及组织脂肪酸组成的影响

马长兴, 王际英, 李宝山, 王成强, 沈钰博, 刘财礼, 周莹

马长兴, 王际英, 李宝山, 王成强, 沈钰博, 刘财礼, 周莹. n-3/n-6 HUFA对许氏平鲉幼鱼生长、体组成及组织脂肪酸组成的影响[J]. 水产学报, 2019, 43(10): 2138-2153. DOI: 10.11964/jfc.20190911980
引用本文: 马长兴, 王际英, 李宝山, 王成强, 沈钰博, 刘财礼, 周莹. n-3/n-6 HUFA对许氏平鲉幼鱼生长、体组成及组织脂肪酸组成的影响[J]. 水产学报, 2019, 43(10): 2138-2153. DOI: 10.11964/jfc.20190911980
MA Changxing, WANG Jiying, LI Baoshan, WANG Chengqiang, SHEN Yubo, LIU Caili, ZHOU Ying. Effects of dietary n-3/n-6 HUFA on growth, body composition and fatty acid composition of tissue in juvenile rockfish (Sebastes schlegeli)[J]. Journal of fisheries of china, 2019, 43(10): 2138-2153. DOI: 10.11964/jfc.20190911980
Citation: MA Changxing, WANG Jiying, LI Baoshan, WANG Chengqiang, SHEN Yubo, LIU Caili, ZHOU Ying. Effects of dietary n-3/n-6 HUFA on growth, body composition and fatty acid composition of tissue in juvenile rockfish (Sebastes schlegeli)[J]. Journal of fisheries of china, 2019, 43(10): 2138-2153. DOI: 10.11964/jfc.20190911980

n-3/n-6 HUFA对许氏平鲉幼鱼生长、体组成及组织脂肪酸组成的影响

基金项目: 烟台市科技计划项目(2017ZH068)
详细信息
    通讯作者:

    王际英,E-mail:ytwjy@126.com

摘要: 为研究饲料n-3/n-6高不饱和脂肪酸(HUFA)对许氏平鲉幼鱼生长、体组成及组织脂肪酸组成的影响,配制了6种n-3/n-6 HUFA(D1:14.28,D2:9.26,D3:5.66,D4:3.06,D5:2.02,D6:1.50)的等氮等脂的实验饲料。以许氏平鲉幼鱼(36.30±0.03) g为研究对象,在网箱中养殖65 d,分为6实验组,每组设3个重复,每个重复30尾鱼。结果发现:① 饲料n-3/n-6 HUFA对许氏平鲉幼鱼的成活率无显著影响。随着n-3/n-6 HUFA降低,幼鱼增重率呈先上升后下降趋势,饲料系数呈相反趋势,D2和D3组的增重率显著高于各组。②全鱼和肌肉粗脂肪含量呈先上升后下降趋势,分别在D2、D3组达到最大值。肝脏粗脂肪含量呈先下降后上升趋势,D2组显著小于其他各组。③各组织C20:4n-6含量随n-3/n-6 HUFA的降低均呈上升趋势,而C20:5n-3、C22:6n-3和n-3/n-6 HUFA整体呈下降趋势。④鱼体脂肪酸组成受饲料影响程度由大到小依次为腹脂、肌肉、全鱼、肝脏,且各组织C20:5n-3与饲料C20:4n-6均呈显著负相关。研究表明,在本实验条件下,饲料中适宜比例(5.66~9.26)的n-3/n-6 HUFA显著提高实验鱼的生长,改变体组成及组织脂肪酸组成,以增重率和饲料系数作评价指标,经一元二次回归分析得许氏平鲉幼鱼饲料中n-3/n-6 HUFA的适宜比例分别是8.93和8.70。

 

Effects of dietary n-3/n-6 HUFA on growth, body composition and fatty acid composition of tissue in juvenile rockfish (Sebastes schlegeli)

Funds: Science and Technology Development Project of Yantai(2017ZH68)
More Information
    Corresponding author:

    WANG Jiying. E-mail: ytwjy@126.com

    Abstract: A 65 d feeding trial was conducted in a float cage to study the effect of dietary n-3/n-6 HUFA(D1:14.28, D2:9.26, D3:5.66, D4:3.06, D5:2.02, D6:1.50) on growth, body composition and fatty acid composition of tissue in juvenile rockfish (Sebastes schlegeli). Six diets were formulated to feed six groups of juvenile S. schlegeli [mean initial weight (36.30±0.03) g], respectively. Each diet was randomly fed to triplicate groups of 30 fish per cage. The results show that: ①Dietary n-3/n-6 HUFA had no significant impact on the survival rate of fish (P>0.05).With the decreasing of dietary n-3/n-6 HUFA, the weight gain rate first increased and then decreased, the feed conversion ratio (FCR) showed an opposite trend, and the weight gain rate of D2 and D3 groups was significantly higher than that of other groups (P<0.05). ②The crude fat in the whole fish and muscle showed a trend of increased first and then decreased, which reaching their peaks in group D2 and D3, respectively(P<0.05).The crude fat in the liver first decreased and then increased, and the D2 group was significantly lower than the other groups (P<0.05).③ The content of C20:4n-6 in all tissues were increased with the decreasing of dietary n-3/n-6 HUFA. C20:5n-3, C22:6n-3 and n-3/n-6 HUFA in all tissues showed an overall decreased trend. ④The fatty acid composition of fish body was affected by the dietary, in order of abdominal fat, muscle, whole fish and liver. The dietary C20:4n-6 was negatively correlated with C20:5n-3 of all tissues. Under this experimental conditions, the appropriate proportion of dietary n-3/n-6HUFA (5.66-9.26) can significantly improve the growth of experimental fish, and modify body composition and fatty acid composition of tissues. The univariate quadratic regression analysis, based on weight gain rate and feed conversion ratio, showed that the appropriate proportion of n-3/n-6 HUFA in the dietary of juvenile S. schlegeli is 8.93 and 8.70, respectively.

     

  • 鱼类的体色丰富多彩,具有躲避捕食者、吸引同类、保护鱼类皮肤免受紫外线伤害等重要作用。斑马鱼(Denio rerio)、日本青鳉(Oryzias latipes)等胚胎发育的周期短,且具有多种色素细胞类型,是研究色素细胞的理想材料[1-7]。鱼类色素细胞由胚胎中的神经嵴发展而来[8],早期发育阶段可见点状分布于脊索上方,起到吸收紫外光,保护神经索的作用[9]。至今,对于黑色素合成相关的slc24a5、wnttyrmitf [10-12]及虹彩色素细胞合成相关的sox10、pax3和alk [13-15]都有较为系统的研究,它们通过有序表达调控色素细胞的发生。

    弓背青鳉(O. curvinotus)是一种结群活动于水体上层的小型卵生鱼类,在我国南海沿岸的多个红树林海区均有分布,具有开发为广盐性模式鱼类的潜力。弓背青鳉性成熟时间短,在人工繁育条件下,3月龄弓背青鳉便可全年产卵。目前已有弓背青鳉资源普查[16-17]、发育及功能等研究[18-20],尚无色素细胞发生的基础资料。本项目组开展转基因研究时发现,弓背青鳉的胚胎发育至12肌节期后,虹彩色素细胞呈现绿色荧光,对转基因系荧光信号形成干扰[20]

    本实验通过对弓背青鳉不同地理群体的早期胚胎进行色素细胞发生发育观察,以及对相关色素基因进行时间表达规律分析,研究其胚胎时期色素细胞生长发育情况,进一步了解不同纬度地理群体弓背青鳉色素发生发育调控机制,为弓背青鳉胚胎实验提供基础。

    本实验所用的弓背青鳉用手抄网采集于广东省廉江市高桥镇、潮州市饶平县及三亚市三亚河口的红树林区域,运回实验室进行淡水驯养繁育,目前已繁育至F6。繁养水温控制在26 °C,光暗周期比为14 h∶10 h,每日定时喂食丰年虫幼体2次[21]

    随机抽取上述3个地理群体F5的弓背青鳉雌、雄各4尾,实验前1天将雌、雄亲鱼分开,次日早晨将雌、雄亲鱼以1∶1混在一起,约30 min产卵受精。为观察到受精卵色素细胞的发育过程,本实验在受精完成后将受精卵取下,并剥离卵间黏连的长丝。

    取受精卵置于体式荧光显微镜下,连续观察其发育过程。观察间隔设定参考研究[20]。在发育前期,每5~10 min观察1次,达到肌节期后1 h观察1次,记录从黑色素细胞开始出现至虹彩色素细胞完全出现的时期,并分别选取相应时期典型的特征形态拍照记录,通过软件Image J融合分析,各群体各个时期的胚胎以15~30个为1组,使用RNA-later保存液保存备用。

    使用TRIzol(Invitrogen)法提取高桥群体上述相应时期胚胎的总RNA。1.0%琼脂糖凝胶电泳检测RNA的完整性和丰度,并使用Nanodrop2000核酸定量仪检测RNA的浓度及A260/A280值。使用反转录试剂盒(TaKaRa)对提取的RNA进行反转录。

    根据转录组数据,找出色素细胞基因alk (Gene ID: evm.TU.Chr19.634)、sox10 (Gene ID: evm.TU.Chr1.300)、pax3 (Gene ID: evm.TU.Chr2.1072)及tyr (Gene ID: evm.TU.Chr6.796) CDs区序列,使用Aligo 7软件进行引物设计(表1),委托生工生物工程(上海)股份有限公司合成。

    表  1  qRT-PCR引物序列
    Table  1.  The primers for qRT-PCR
    引物名称
    primers name
    序列
    sequences
    alk-F 5′-TAAACTCTCTGCTGCAAATGGCT-3′
    alk-R 5′-GCAGGAGTTAAACCACCACGTCA-3′
    sox10-F 5′-AGACTCTGGGCAAACTGTGG-3′
    sox10-R 5′-CCTTCTTGTGCTGCTTCCTC-3′
    pax3-F 5′-CGGACTATTTCCAACACCACAG-3′
    pax3-R 5′-CGAACACGATGTAGAAGTAAGCG-3′
    tyr-F 5′-GTAACCCTGGAAACCACAACC-3′
    tyr-R 5′-CAGACGAGAACTGCTACCCAAC-3′
    rps4x-F 5′-GAAACACTGGATGCTGGATAAG-3′
    rps4x-R 5′-ACTTCAGGCGGTTCCTCAGG-3′
    下载: 导出CSV 
    | 显示表格

    采用SYBR Green ⅠqRT-PCR对各个样品中的色素基因表达量进行检测,设3个不同样品的平行对照。选择rps4x作为内参基因[22]。PCR扩增体系为15 μL,其中PCR Mix (东盛生物科技公司) 7.5 μL,正反引物(10 μmol/L)各0.3 μL,cDNA(5 ng/μL) 2 μL,ddH2O 4.9 μL。反应于 Roche Light Cycler 96 定量仪 (罗氏,瑞士) 完成,反应程序:94 °C 2 min预变性;94 °C 1 min,60 °C 1 min,72 °C 1 min,40个循环;最后72 °C延伸10 min。反应结束后进行熔解曲线的制作,熔解曲线的温度设为60~95 °C,每隔5 s升温0.5 °C,检测是否有非特异扩增。

    通过qRT-PCR对弓背青鳉高桥群体4个色素细胞发生相关基因在不同发育时期(6~10、12和14肌节期)的表达情况进行检测,利用定量PCR自带的LightCycler® 96 SW 1.1软件分析其熔解曲线。采用2−ΔΔCT方法分析不同时期各基因的相对表达水平[23],所得数据用GraphPad Prism 7软件作图。

    对弓背青鳉不同地理群体F6进行胚胎色素发生观察,结果显示,饶平群体黑色素细胞(统计共105颗受精卵)与虹彩色素细胞(统计共140颗受精卵)集中出现于8肌节期与10肌节期,分别占81.9 %与52.1 %;高桥群体的黑色素细胞(统计共253颗受精卵)与虹彩色素细胞(统计共307颗受精卵)集中出现于7肌节期与11肌节期,分别占47.7 %和42.1 %;而三亚群体黑色素细胞(统计共225颗受精卵)与虹彩色素细胞(共统计241颗受精卵)集中出现于8肌节期与12肌节期,占44 %和62.2 %。3个不同纬度的地理群体在相同环境养殖下,其黑色素细胞与虹彩色素细胞的发生时间存在群体分化差异(图1),即随纬度降低,黑色素细胞和虹彩色素细胞发生时间推后。

    图  1  弓背青鳉不同肌节期出现虹彩色素细胞(a)和黑色素细胞(b)的数量
    Figure  1.  Numbers of iridophores (a) and melanophores (b) at the different somite stages of O. curvinotus

    通过体式荧光显微镜对高桥群体弓背青鳉早期胚胎进行观察,结果显示,弓背青鳉高桥群体在6肌节期开始出现黑色素细胞,成块状分布于胚体与卵黄;而虹彩色素细胞出现于9肌节期,首先出现于头部,随后便成点状分布于头部与体节(图版)。

      图版  弓背青鳉高桥群体早期胚胎黑色素和虹彩色素发生
    1~3. 6~8肌节期;4~13. 9、10、12和14肌节期;1~3,4,7,10,13. 白光;5,8,11,14. ImageJ融合;6,9,12,15. 绿色荧光;M. 黑色素细胞;gp. 虹彩色素细胞
      图版.  Development of early embryogenesis of melanin and iridescent pigment of O. curvinotus from Gaoqiao
    1-3. 6-9 somites stages; 4-13. 9,10,12 and 14-somite stages; 1~3, 4, 7, 10, 13. white light; 5, 8, 11, 14. merged by ImageJ; 6, 9, 12, 15. green fluorescence; M. melanophores; gp. iridophores

    qRT-PCR结果显示,黑色素形成相关限速酶基因tyr表达水平在7~9肌节期呈现明显上调,随后趋缓;而sox10和pax3与下游的alk在10~14肌节期呈现一致的表达模式,均在12肌节期达到峰值(图2- a)。tyr作为黑色素相关关键基因,对黑色素的合成表达具有直接影响作用。在早期研究中,sox10与pax3在胚胎发育过程中的表达维持被认为是延迟黑色素的分化。同时sox10与pax3对虹彩色素细胞启动分化具有一定的促进作用,与alk共同调控虹彩色素细胞的表达。sox10、pax3、alktyr的表达与虹彩色素细胞和黑色素细胞的发生次序一致性良好,符合鱼类色素发育的经典调控模式(图2- b)。

    图  2  弓背青鳉高桥群体黑色素和虹彩色素关键基因的定量表达(a)和调控关系(b)
    Figure  2.  The quantitative expression (a) and regulation of key genes (b) of O. curvinotus from Gaoqiao

    色素细胞为动物提供复杂的颜色以吸引异性、躲避攻击,是进化过程中性选择和自然选择的结果。相对于人类仅保留着黑色素,许多鱼类拥有多种色素,其发育、进化以及相关基因表达模式吸引着众多学者研究,一直是生物学研究的热点。

    本研究对弓背青鳉高桥群体4个色素基因(alksox10、pax3和tyr)进行荧光定量分析,结果显示,在胚胎色素发育过程中,以上4个基因均有表达。tyr作为一种限速酶基因,是黑色素合成表达的关键基因,直接影响着黑色素的合成[24]tyr突变会导致斑马鱼皮肤黑色素缺失[25]。本实验定量结果显示,tyr表达水平在7~9肌节期呈现明显上调,随后趋缓。对弓背青鳉高桥群体胚胎色素发育观察发现,黑色素从6肌节期开始出现,与荧光定量结果相符。

    ALK与LTK均属于受体酪氨酸酶(RTK)超家族,具有相同的MAM结构域。Lopes等[26]通过细胞移植基因敲除实验发现了虹彩色素细胞新的信号通路,并证明了在斑马鱼中的白细胞酪氨酸激酶基因(ltk)是色素细胞分化为虹彩色素细胞的一个重要基因,同时该研究表明ltk与间变性淋巴瘤激酶配体基因(alkals)缺失会导致斑马鱼胚胎与成年斑马鱼虹膜结构受到破坏,证明二者共同诱导从神经嵴细胞和色素前体细胞分化出虹彩色素细胞。我们在对弓背青鳉转录组进行分析时发现,在弓背青鳉中ltk缺失,促使与之同源性最高的间变性淋巴瘤激酶基因(alk)可能成为诱导虹彩细胞表达的下游基因,调控虹彩色素细胞的表达。

    sox10和pax3通过物理作用可协同激活黑色素相关基因mitfa的表达,但只能短暂发挥调节作用,不能长期维持其表达,其表达的维持被认为是促进多能性与延迟黑色素的分化[27-29]。Petratou等[15]通过基因敲除实验验证了缺失sox10的斑马鱼在表达虹彩色素细胞上出现缺失,导致虹彩色素细胞表达失败,证明sox10与pax3在虹彩色素细胞的分化过程中起关键作用。结合本研究qRT-PCR结果可以发现,sox10和pax3与下游的alk在10~14肌节期均呈现一致的单峰模式,猜测弓背青鳉的sox10、pax3与下游基因alk共同抑制黑色素,启动虹彩色素细胞的分化与表达。

    综上所述,实验通过分析弓背青鳉高桥群体早期胚胎色素细胞发生相关基因的表达模式,发现黑色素细胞与虹彩色素细胞相关色素基因均通过协同作用进行调节,相关基因与色素细胞发生次序一致性良好,符合鱼类色素发育的经典调控模式。实验结果为研究弓背青鳉早期胚胎色素发育提供了参考依据,为后期对相关色素基因进行基因编辑提供基础资料。

    自然界中,种群个体形态异质性是物种的重要适应性之一,其形态上的差异对种群能更加多样化地利用资源、繁殖后代和适应环境提供保障。本研究通过对弓背青鳉F6进行早期胚胎色素发育观察,结果显示,不同地区的弓背青鳉其色素发生时间不一致,纬度最高的饶平弓背青鳉群体的虹彩色素细胞出现得最早,10肌节期开始集中出现,纬度最低的三亚群体在12肌节期集中出现虹彩色素细胞。而黑色素在3个群体中均在7、8肌节期开始出现。色素细胞出现时间存在差异,支持弓背青鳉在不同纬度地区出现群体遗传分化。

    大量研究表明,光线对鱼类体色存在明显的影响,如邹旭龙[30]通过对锦鲤(Cyprinus carpio var. koi)进行长时间光照处理使锦鲤体色产生显著变化;弱光条件下锦鲤产生环境应激,证明光照环境在一定程度上会对鱼类生长与体色的发育造成影响。Han等[31]通过使用不同级别照明对长吻鮠(Leiocassis longirostris)进行光照处理,结果显示光照强度对长吻鮠的生长发育有显著影响,长吻鮠在312 lx的光强度下有更高的生长率和存活率,而434 lx的光强度下幼鱼的皮肤体色变暗。Ginés等[32]对金头鲷(Sparus aurata)使用不同的光照周期进行实验,结果显示,金头鲷的皮肤颜色与光照时间正相关。本研究分析的弓背青鳉的胚胎发育阶段,尚不涉及性选择,处于较高纬度的饶平地区的弓背青鳉胚胎更早出现虹彩色素细胞的原因推测可能为光照、气温等自然条件的长期选择压力下,自然群体间缺乏基因交流造成适应性分化。

    综上,通过对弓背青鳉3个地理群体F6胚胎色素细胞进行观察及对高桥群体F6进行qRT-PCR分析,结果显示,弓背青鳉早期黑色素与虹彩色素细胞发育发生过程服从鱼类色素细胞发生的经典通路,且3个不同地理群体弓背青鳉色素细胞发生时间出现差异,符合群体遗传分化,但其具体机制需进一步研究。

  • 图  1   许氏平鲉幼鱼WGR与饲料n-3/n-6 HUFA的相关性分析

    Figure  1.   Relationship between dietary n-3/n-6 HUFA and WGR of S. schlegeli

    图  2   许氏平鲉幼鱼FCR与饲料n-3/n-6 HUFA的相关性分析

    Figure  2.   Relationship between dietary n-3/n-6 HUFA and FCR of S. schlegeli

    表  1   饲料配方及营养组成(干物质基础)

    Table  1   Composition and nutrient levels of the experimental diets (dry matter basis)

    项目
    items
    组别 diets
    D1D2D3D4D5D6
    原料/% ingredients
    白鱼粉 white fish meal 40.00 40.00 40.00 40.00 40.00 40.00
    大豆浓缩蛋白 soyprotein concentrate 30.00 30.00 30.00 30.00 30.00 30.00
    α-淀粉 α-starch 15.50 15.50 15.50 15.50 15.50 15.50
    鱼油 fish oil 6.40 6.25 6.00 5.50 5.00 4.50
    花生四烯酸油脂 arachidonic acid oil 1) 0.10 0.25 0.50 1.00 1.50 2.00
    维生素混合物 vitamins premix 2) 1.00 1.00 1.00 1.00 1.00 1.00
    矿物质混合物 minerals premix 3) 1.00 1.00 1.00 1.00 1.00 1.00
    磷酸二氢钙 Ca(H2PO4)2 1.00 1.00 1.00 1.00 1.00 1.00
    抗氧化剂 antioxidant 0.30 0.30 0.30 0.30 0.30 0.30
    维生素C Vitamin C 0.50 0.50 0.50 0.50 0.50 0.50
    氯化胆碱 choline chloride 0.50 0.50 0.50 0.50 0.50 0.50
    甜菜碱 betaine 0.30 0.30 0.30 0.30 0.30 0.30
    羧甲基纤维素钠 CMC 2.40 2.40 2.40 2.40 2.40 2.40
    大豆卵磷脂 soy lecithin 1.00 1.00 1.00 1.00 1.00 1.00
    合计 total 100.00 100.00 100.00 100.00 100.00 100.00
    营养组成 nutrient composition
    水分 moisture 6.94 7.65 7.02 7.23 7.51 7.28
    粗蛋白 crude protein 50.67 50.99 50.67 50.82 50.63 50.78
    粗脂肪 crude lipid 10.45 10.24 10.06 10.43 10.41 10.13
    灰分 crude ash 12.23 12.21 12.22 12.17 12.16 12.19
    总能/(kJ/g) gross energy 20.39 20.38 20.44 20.34 20.45 20.43
    注:1) 花生四烯酸油脂购自欣和生物科技(湖北)有限公司,成分为ARA 55.38%,C16:0 6.17%,C18:0 10.32%,C18:1n-9 8.17%,C18:2n-6 5.89%,C20:0 1.02%,C18:3n-6 2.59%,C20:3n-6 2.59%;2)维生素预混料(g/kg饲料)维生素C 121.2 g,DL维生素E生育酚乙酸酯 18.8 g,盐酸硫胺素 2.7 g,核黄素 9.1 g,盐酸吡哆醇 1.8 g,烟酸 27.8 g,泛酸钙 12.7 g,肌醇 181.8 g,生物素 0.27 g,叶酸(98%) 0.68 g,维生素K 1.8 g,维生素A乙酸酯 0.73 g,维生素D3 0.003 g,维生素B12 0.003 g;3) 矿物质预混料(g/kg饲料)MgSO4·7H2O 80 g,NaH2PO4·2H2O 370.0 g,KCl 130 g,柠檬酸铁 40 g,ZnSO4·7H2O 20.0 g,C6H10CaO6 356.5 g,氯化亚铜 0.2 g,六水氯化铝 0.15 g,碘化钾 0.15 g,亚硒酸钠 0.01 g,一水硫酸锰 2.0 g,六水氯化钴 1.0 g
    Notes :1) Arachidonic acid oil were purchased from Xinhe Biological Technology (Hubei) Co., Ltd., the concentration of ARA 55.38%, C16:0 6.17%, C18:0 10.32%, C18:1n-9 8.17%, C18:2n-6 5.89%, C20.0 1.02%, C18:3n-6 2.59%, C20.3n-6 2.59%; 2) Vitamin premix (g/kg diet) vitamin C 121.2 g, DL vitamin E tocopherol 18.8 g, thiamine hydrochloride 2.7 g, riboflavin 9.1 g, pyridoxine hydrochloride 1.8 g, niacin acid 27.8 g, calcium pantothenate 12.7 g, inositol 181.8 g, biotin 0.27 g, folic acid (98%)0.68 g, vitamin K 1.8 g, vitamin A acetate 0.73 g, vitamin D3 0.003 g, vitamin B12 0.003 g; 3) Mineral premix (g/kg diet)MgSO4·7H2O 80 g, NaH2PO4·2H2O 370.0 g, KCl 130 g, ferric citrate 40 g, ZnSO4·7H2O 20.0 g, C6H10CaO6 356.5 g, cuprous chloride 0.2 g, aluminum chloride hexahydrate 0.15 g, potassium iodide 0.15 g, sodium selenite 0.01 g, manganese sulfate monohydrate 2.0 g, cobalt chloride hexahydrate 1.0 g
    下载: 导出CSV

    表  2   实验饲料脂肪酸组成(%总脂肪酸)

    Table  2   Fatty acid composition of experimental diets (%total fatty acid)

    脂肪酸
    fatty acid
    组别 diets
    D1D2D3D4D5D6
    C14:0 4.49 4.48 4.24 3.99 3.77 3.52
    C16:0 18.57 18.57 18.02 17.49 17.06 16.62
    C18:0 3.60 3.78 3.89 4.22 4.62 5.01
    C20:0 0.45 0.46 0.46 0.45 0.49 0.51
    ΣSFA 27.11 27.29 26.61 26.15 25.94 25.66
    C16:1n-7 5.55 5.53 5.27 5.01 4.67 4.41
    C18:1n-9 12.08 12.11 12.03 11.94 11.67 11.55
    C18:1n-7 3.31 3.37 3.46 3.54 3.64 3.66
    C20:1n-7 3.16 3.12 3.09 2.97 2.80 2.65
    C22:1n-9 4.93 4.81 4.76 4.53 4.24 4.06
    ΣMUFA 29.03 28.94 28.61 27.99 27.02 26.33
    C18:2n-6 6.71 6.63 6.86 7.16 7.34 7.54
    C18:3n-3 1.68 1.65 1.62 1.58 1.54 1.49
    C20:2n-6 1.87 1.84 1.66 1.40 1.27 1.16
    ARA 1.41 2.15 3.46 6.06 8.70 10.96
    EPA 9.10 8.92 8.74 8.25 7.83 7.29
    DHA 12.19 11.88 11.66 10.98 10.28 9.58
    ∑PUFA 32.96 33.07 34.05 35.43 36.96 38.02
    EPA/DHA 0.75 0.75 0.75 0.75 0.76 0.76
    n-3/n-6 HUFA 14.28 9.26 5.66 3.06 2.02 1.50
    注:含量较少的脂肪酸(如C20:2n-9、C22:0、C18:3n-6、C22:5n-3)未列入表中;SFA. 饱和脂肪酸,MUFA. 单不饱和脂肪酸,ARA. 花生四烯酸,EPA. 二十碳五烯酸,DHA. 二十二碳六烯酸,PUFA. 多不饱和脂肪酸,HUFA,高不饱和脂肪酸。下同
    Notes: some fatty acids, of which the contents are minor, trace amount or not detected(such as C22:0, C18:3n-6, C22:5n-3)were not listed in the table; SFA. saturated fatty acid, MUFA. monounsaturated fatty acid, ARA. arachidonic acid, EPA. eicosapentaenoic acid, DHA. docosahexaenoic acid. PUHA. polyunsaturated fatty acids, HUFA. highly unsaturated fatty acid. The same below
    下载: 导出CSV

    表  3   n-3/n-6 HUFA对许氏平鲉幼鱼生长性能、饲料利用及形体指标的影响

    Table  3   Effects of dietary n-3/n-6 HUFA ratios on growth performance, feed utilization and morphometric index of juvenile S. schlegeli

    项目
    items
    组别 diets
    D1D2D3D4D5D6
    初始体质量/g IBM 36.27±0.09 36.33±0.04 36.25±0.02 36.32±0.05 36.29±0.05 36.32±0.02
    终末体质量/g FBW 78.10±1.06b 80.50±0.17bc 80.75±0.68c 78.54±1.25bc 75.10±2.72a 74.01±0.70a
    增重率/% WGR 115.27±2.71b 121.67±0.37c 122.59±1.84c 116.3±3.36b 105.26±4.64a 103.86±1.84a
    摄食率//% DFI 1.12±0.02 1.12±0.03 1.12±0.01 1.11±0.02 1.11±0.02 1.11±0.04
    特定生长率/(%/d) SGR 1.18±0.02b 1.23±0.01bc 1.23±0.01c 1.19±0.02bc 1.12±0.05a 1.10±0.10a
    饲料系数 FCR 1.00±0.02bc 0.96±0.01a 0.97±0.01ab 1.00±0.02bc 1.02±0.02cd 1.04±0.01d
    蛋白质效率 PER 1.95±0.04abc 2.07±0.03d 2.03±0.04cd 2.00±0.02bcd 1.91±0.03a 1.92±0.02ab
    肥满度/(g/cm3) CF 2.78±0.09 2.73±0.03 2.77±0.02 2.78±0.12 2.80±0.03 2.74±0.06
    脏体比/% VSI 9.68±0.14 9.87±0.06 9.85±0.09 9.87±0..05 9.74±0.07 9.65±0.01
    肝体比/% HSI 3.03±0.06 3.20±0.15 3.16±0.08 3.13±0.08 3.05±0.04 3.09±0.07
    成活率/% SR 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
    注:同行数据上标无字母或相同字母表示差异不显著(P>0.05),不同字母表示差异显著(P<0.05),下同
    Notes: in the same row, values with no or the letter same superscripts mean no significant difference(P>0.05),while with different small letter superscripts mean significant difference (P<0.05). The same below
    下载: 导出CSV

    表  4   n-3/n-6 HUFA对许氏平鲉幼鱼体组成的影响

    Table  4   Effects of dietary n-3/n-6 HUFA ratios on tissue proximate composition of juvenile S. schlegeli

    组别 diets
    D1D2D3D4D5D6
    全鱼 whole body
    水分 moisture 69.33±1.05 70.10±0.60 69.62±1.09 68.83±0.41 69.16±1.86 69.04±0.60
    粗蛋白 crude protein 16.64±0.18b 16.19±0.14a 16.68±0.30b 16.97±0.19bc 16.98±0.33bc 17.22±0.17c
    粗脂肪 crude lipid 9.46±0.47bc 9.74±0.23c 9.34±0.36bc 9.15±0.07bc 8.95±0.65b 8.18±0.14a
    粗灰分 crude ash 4.47±0.13 4.43±0.03 4.55±0.12 4.50±0.20 4.54±0.15 4.66±0.15
    肌肉 muscle
    水分 moisture 74.09±0.52 74.25±0.10 74.38±0.53 74.18±0.50 74.42±0.02 74.31±0.19
    粗蛋白 crude protein 21.72±0.16abc 21.66±0.10ab 21.50±0.07a 21.71±0.19abc 21.98±0.16bc 21.89±0.21bc
    粗脂肪 crude lipid 3.70±0.04b 3.66±0.03b 3.82±0.11c 3.73±0.10bc 3.35±0.04a 3.31±0.03a
    粗灰分 crude ash 1.37±0.01ab 1.37±0.01ab 1.33±0.01a 1.40±0.06b 1.39±0.01b 1.34±0.01a
    肝脏 liver
    水分 moisture 47.41±0.53b 47.91±0.57b 46.21±0.10a 47.46±0.36b 47.93±0.86b 47.93±0.25b
    粗蛋白 crude protein 9.55±0.08a 10.06±0.02c 10.34±0.05e 10.21±0.01d 9.83±0.01b 9.77±0.03b
    粗脂肪 crude lipid 31.42±0.03c 28.15±0.25a 29.88±0.01b 31.32±0.01c 31.62±0.07d 31.76±0.02d
    粗灰分 crude ash 1.19±0.02 1.20±0.03 1.21±0.06 1.22±0.08 1.24±0.03 1.22±0.01
    下载: 导出CSV

    表  5   n-3/n-6 HUFA对许氏平鲉幼鱼全鱼脂肪酸组成的影响(%总脂肪酸)

    Table  5   Effects of dietary n-3/n-6 HUFA ratios on fatty acid composition of whole fish in juvenile S. schlegeli

    脂肪酸
    fatty acid
    组别 diets
    D1D2D3D4D5D6
    C14:0 3.63±0.01d 3.54±0.09c 3.53±0.05c 3.40±0.05b 3.37±0.01b 3.20±0.05a
    C16:0 18.67±0.49 18.60±0.58 18.25±0.45 18.16±0.64 18.03±0.48 17.51±0.48
    C18:0 3.53±0.12a 3.49±0.10a 3.61±0.12a 3.80±0.10b 3.93±0.06b 4.10±0.02c
    C20:0 0.28±0.01 0.27±0.01 0.28±0.01 0.28±0.01 0.29±0.02 0.29±0.01
    ΣSFA 26.32±0.17c 26.00±0.43bc 25.77±0.27b 25.63±0.31b 25.59±0.11b 24.60±0.13a
    C16:1n-7 7.50±0.45b 7.25±0.40b 7.25±0.34b 7.17±0.43b 6.52±0.25ab 5.73±0.26a
    C18:1n-9 22.25±0.68bc 22.61±1.11c 22.18±1.03bc 22.99±0.53c 20.87±0.80ab 19.87±0.64a
    C18:1n-7 4.06±0.04 3.82±0.18 3.90±0.03 3.86±0.10 3.87±0.06 3.76±0.06
    C20:1n-7 3.08±0.33 3.08±0.02 3.18±0.10 2.83±0.01 2.82±0.20 2.97±0.08
    C22:1n-9 2.60±0.04 2.48±0.05 2.57±0.09 2.44±0.08 2.42±0.14 2.36±0.04
    ∑MUFA 39.83±0.94c 39.64±1.78c 39.08±1.22c 39.13±1.14c 34.86±0.43b 32.19±1.30a
    C18:2n-6 7.76±0.11a 7.94±0.20ab 8.06±0.07b 8.32±0.03c 9.57±0.18d 10.17±0.03e
    C18:3n-3 1.36±0.01ab 1.40±0.10ab 1.41±0.07ab 1.36±0.02a 1.45±0.04b 1.46±0.01b
    C20:2n-6 1.12±0.03b 1.09±0.02b 1.11±0.03b 0.98±0.04a 0.98±0.01a 0.99±0.01a
    ARA 1.00±0.03a 1.41±0.08b 2.17±0.02c 3.63±0.10d 4.63±0.32e 6.01±0.20f
    EPA 6.01±0.14b 5.84±0.06b 5.89±0.01b 5.56±0.10a 5.51±0.01a 5.55±0.01a
    DHA 8.92±0.39c 8.62±0.22bc 8.65±0.09bc 8.65±0.01bc 8.02±0.02a 8.16±0.01a
    ∑PUFA 25.49±0.94a 26.36±2.02a 26.90±0.87a 26.72±1.19a 29.63±0.37b 32.26±0.43c
    EPA/DHA 0.67±0.01 0.68±0.01 0.68±0.01 0.64±0.01 0.69±0.01 0.69±0.01
    n-3/n-6 HUFA 13.80±0.32e 9.67±0.67d 6.36±0.11c 3.76±0.0.11b 2.71±0.06a 2.21±0.07a
    下载: 导出CSV

    表  6   n-3/n-6 HUFA对许氏平鲉幼鱼肌肉脂肪酸组成的影响(%总脂肪酸)

    Table  6   Effects of dietary n-3/n-6 HUFA ratios on fatty acid composition of muscle in juvenile S.schlegeli

    脂肪酸
    fatty acid
    组别 diets
    D1D2D3D4D5D6
    C14:0 3.34±0.02d 3.08±0.01c 3.07±0.01c 2.95±0.03b 2.94±0.01b 2.71±0.02a
    C16:0 18.72±0.40 18.53±0.42 18.44±0.37 18.06±0.38 18.13±0.37 18.07±0.36
    C18:0 3.41±0.17 3.45±0.18 3.45±0.21 3.58±0.31 3.72±0.45 3.82±0.21
    C20:0 0.24±0.03 0.25±0.03 0.24±0.02 0.26±0.03 0.26±0.03 0.28±0.03
    ΣSFA 25.71±0.26 25.31±0.60 25.20±0.59 24.85±0.71 25.06±0.87 24.88±0.59
    C16:1n-7 7.35±0.03f 6.80±0.04e 6.58±0.01d 6.33±0.01c 6.05±0.01b 5.73±0.02a
    C18:1n-9 21.86±0.08d 20.63±0.12c 20.29±0.07b 20.31±0.03b 20.33±0.02b 19.47±0.03a
    C18:1n-7 4.05±0.01e 3.86±0.05d 3.80±0.04c 3.71±0.02b 3.67±0.01b 3.57±0.01a
    C20:1n-7 2.20±0.07 2.11±0.12 2.04±0.10 2.00±0.11 1.98±0.22 1.97±0.20
    C22:1n-9 2.46±0.10c 2.34±0.19bc 2.26±0.19abc 2.23±0.21abc 2.14±0.10ab 2.01±0.11a
    ∑MUFA 37.91±0.24e 35.73±0.36d 34.97±0.27c 34.57±0.34bc 34.17±0.11b 32.76±0.16a
    C18:2n-6 7.26±0.09a 7.30±0.16a 7.58±0.10b 7.84±0.10c 8.02±0.09c 7.99±0.11c
    C18:3n-3 1.26±0.02b 1.22±0.04b 1.21±0.01b 1.24±0.04b 1.21±0.10b 1.12±0.01a
    C20:2n-6 1.06±0.01f 1.03±0.01e 1.01±0.01d 0.96±0.01c 0.92±0.01b 0.80±0.01a
    ARA 1.15±0.02a 1.74±0.01b 2.52±0.01c 4.08±0.01d 5.41±0.01e 7.11±0.01f
    EPA 6.44±0.05d 6.52±0.03e 6.45±0.03d 6.12±0.06c 5.86±0.01b 5.43±0.02a
    DHA 11.79±0.12c 12.58±0.04e 12.38±0.04d 11.74±0.05c 11.55±0.01b 11.20±0.02a
    ∑PUFA 28.17±0.17a 29.67±0.18b 30.47±0.17c 31.46±0.10d 32.59±0.24e 33.48±0.09f
    EPA/DHA 0.55±0.02 0.52±0.03 0.52±0.02 0.52±0.01 0.51±0.01 0.49±0.04
    n-3/n-6 HUFA 15.82±0.23f 10.97±0.09e 7.46±0.01d 4.38±0.02c 3.22±0.04b 2.34±0.01a
    下载: 导出CSV

    表  7   n-3/n-6 HUFA对许氏平鲉幼鱼肝脏脂肪酸组成的影响(%总脂肪酸)

    Table  7   Effects of dietary n-3/n-6 HUFA ratios on fatty acid composition of liver in juvenile S.schlegeli

    脂肪酸
    fatty acid
    组别 diets
    D1D2D3D4D5D6
    C14:0 2.79±0.12 2.62±0.21 2.82±0.11 2.93±0.20 2.61±0.20 2.89±0.20
    C16:0 20.45±0.85 20.47±0.50 20.56±0.31 21.39±0.36 20.82±0.40 20.71±0.51
    C18:0 4.04±0.25 3.94±0.16 3.98±0.21 4.21±0.20 4.30±0.11 4.30±0.21
    C20:0 0.16±0.01 0.17±0.01 0.16±0.02 0.17±0.02 0.18±0.02 0.17±0.01
    ΣSFA 27.45±0.68a 27.21±0.45a 27.52±0.44a 28.71±0.37b 27.91±0.30ab 28.07±0.20ab
    C16:1n-7 13.09±0.23 13.03±0.11 13.12±0.25 13.12±0.10 12.87±0.23 12.96±0.12
    C18:1n-9 41.68±0.19c 38.92±0.78a 40.33±0.22b 40.76±0.16b 40.47±0.22b 40.48±0.22b
    C18:1n-7 4.31±0.19 4.30±0.12 4.39±0.18 4.31±0.18 4.26±0.12 4.33±0.20
    C20:1n-7 1.31±0.11b 1.51±0.10c 1.32±0.10b 1.13±0.10a 1.09±0.03a 1.11±0.11a
    C22:1n-9 0.95±0.03b 1.38±0.03c 0.95±0.03b 0.81±0.03a 0.78±0.01a 0.77±0.03a
    ∑MUFA 61.34±0.40d 60.35±0.32ac 59.94±0.13bc 59.61±0.18ab 59.29±0.21a 59.39±0.05a
    C18:2n-6 1.86±0.10a 3.21±0.10c 2.35±0.10b 2.30±0.08b 2.28±0.08b 2.26±0.10b
    C18:3n-3 0.41±0.01b 0.59±0.01d 0.45±0.01c 0.37±0.02a 0.39±0.03ab 0.39±0.02ab
    C20:2n-6 0.21±0.01b 0.27±0.01d 0.24±0.01c 0.19±0.01a 0.18±0.01a 0.17±0.01a
    ARA 0.41±0.01a 0.71±0.01b 0.87±0.02c 1.56±0.01d 1.83±0.01e 2.16±0.01f
    EPA 1.56±0.10c 2.00±0.05e 1.88±0.05d 1.47±0.10c 1.27±0.03b 1.11±0.03a
    DHA 2.05±0.01e 2.40±0.01f 2.30±0.04d 1.85±0.10c 1.73±0.03b 1.32±0.02a
    ∑PUFA 6.41±0.19a 9.10±0.01d 8.04±0.15c 7.75±0.14b 7.80±0.07b 7.56±0.14b
    EPA/DHA 0.76±0.01 0.82±0.01 0.81±0.01 0.75±0.01 0.77±0.02 0.82±0.01
    n-3/n-6 HUFA 8.78±0.25f 6.20±0.08e 3.92±0.16d 2.35±0.02c 1.33±0.01b 1.18±0.01a
    下载: 导出CSV

    表  8   n-3/n-6 HUFA对许氏平鲉幼鱼腹脂的脂肪酸组成的影响(%总脂肪酸)

    Table  8   Effects of dietary n-3/n-6 HUFA ratios on fatty acid composition of visceral fat in juvenile S. schlegeli

    脂肪酸
    fatty acid
    组别 diets
    D1D2D3D4D5D6
    C14:0 4.08±0.04d 4.10±0.04d 3.92±0.06c 3.67±0.02b 3.56±0.05a 3.50±0.02a
    C16:0 16.93±0.36 16.88±0.36 16.70±0.19 16.51±0.13 16.53±0.20 16.61±0.20
    C18:0 2.92±0.12a 3.17±0.06b 3.14±0.05b 3.11±0.06b 3.36±0.01c 3.56±0.01d
    C20:0 0.29±0.01 0.30±0.02 0.28±0.01 0.28±0.01 0.28±0.01 0.29±0.01
    ΣSFA 24.22±0.51bc 24.45±0.39c 24.04±0.18abc 23.57±0.16a 23.73±0.18ab 23.96±0.18abc
    C16:1n-7 7.65±0.10d 7.64±0.05d 7.28±0.06c 7.34±0.12c 6.94±0.14b 6.45±0.02a
    C18:1n-9 19.67±0.18a 19.73±0.23a 20.12±0.38ab 20.55±0.45b 20.44±0.27b 19.70±0.25a
    C18:1n-7 4.13±0.10ab 4.25±0.25b 4.15±0.02b 4.07±0.11ab 4.10±0.14ab 3.88±0.05a
    C20:1n-7 3.71±0.12c 3.56±0.31c 3.09±0.10ab 2.95±0.13ab 2.64±0.29a 2.63±0.33a
    C22:1n-9 3.43±0.12c 3.48±0.09c 3.15±0.18b 2.85±0.11a 2.74±0.04a 2.75±0.08a
    ∑MUFA 38.60±0.26d 38.65±0.13d 37.79±0.06c 37.76±0.17c 36.86±0.48b 35.4±0.18a
    C18:2n-6 7.65±0.19a 7.48±0.05a 8.81±0.89b 8.80±0.44b 8.98±0.43c 9.23±0.72c
    C18:3n-3 1.68±0.10ab 1.60±0.06a 1.74±0.05b 1.60±0.07a 1.58±0.07a 1.62±0.04ab
    C20:2n-6 1.95±0.04e 1.81±0.11d 1.47±0.04c 1.35±0.03b 1.25±0.04a 1.17±0.02a
    ARA 1.12±0.08a 1.63±0.02b 2.26±0.09c 4.19±0.27d 5.76±0.24e 7.20±0.60f
    EPA 7.38±0.07e 7.34±0.11e 7.00±0.19d 6.64±0.06c 6.26±0.11b 5.90±0.04a
    DHA 9.65±0.31c 9.49±0.23c 8.80±0.50b 8.56±0.35b 7.84±0.21a 7.47±0.11a
    ∑PUFA 27.84±0.81a 27.33±0.12a 28.98±0.16b 29.96±0.10c 30.51±0.51d 32.18±0.04e
    EPA/DHA 0.76±0.04 0.77±0.02 0.80±0.04 0.78±0.03 0.79±0.02 0.79±0.03
    n-3/n-6 HUFA 14.52±0.72f 9.79±0.13e 6.60±0.03d 3.41±0.14c 2.37±0.10b 1.81±0.13a
    下载: 导出CSV

    表  9   饲料脂肪酸与组织脂肪酸的相关性分析结果

    Table  9   Correlation analysis results of fatty acids in feed and the corresponding fatty acids in tissues

    脂肪酸
    fatty acid
    组织 tissue
    全鱼肌肉肝脏腹脂
    C14:0 0.960** 0.902* −0.287 0.984**
    C16:0 0.935** 0.906* −0.670 0.846*
    C18:0 0.983** 0.993** 0.885* 0.868*
    C20:0 0.794 0.808 0.542 0.184
    C16:1n-7 0.926** 0.944** 0.643 0.961**
    C18:1n-9 0.862* 0.736 −0.099 −0.228
    C18:1n-7 −0.675 −0.804 −0.183 −0.730
    C20:1n-7 0.702 0.857* 0.829* 0.938**
    C22:1n-9 0.917** 0.963** 0.681 0.932**
    C18:2n-6 0.936** 0.959** −0.324 0.896*
    C18:3n-3 −0.714 0.808 0.533 0.445
    C20:2n-6 0.913* 0.931* 0.827* 0.885*
    ARA 0.998** 0.999** 0.982** 0.999**
    EPA 0.798 0.979** 0.789 0.993**
    DHA 0.638 0.784 0.798 0.978**
    EPA/DHA 0.621 −0.732 0.380 0.439
    n-3/n-6 HUFA 0.999** 0.999** 0.998** 0.999**
    注:* 表示在0.05水平(双侧)上显著相关,* *表示在0.01水平(双侧)上极显著相关,下同
    Notes: * represented significant correlation at the 0.05 level (bilateral), * * represented extremely significant correlation at the 0.05 level (bilateral),the same below
    下载: 导出CSV

    表  10   饲料与组织中重要HUFA的相关性分析结果

    Table  10   Correlation analysis results of important HUFA in feed and tissue

    项目
    items
    脂肪酸 fatty acid
    ARAEPADHA
    ARA 全鱼 whole fish 0.998** −0.858* −0.880*
    肌肉 muscle 0.999** −0.973** −0.797
    肝脏 liver 0.982** −0.812* −0.887*
    腹脂 abdominal fat 0.999** −0.997** −0.984**
    EPA 全鱼 whole fish −0.998** 0.798 0.866*
    肌肉 muscle −0.999** 0.979** 0.792
    肝脏 liver −0.974** 0.789 0.870*
    腹脂 abdominal fat −0.998** 0.978** 0.976**
    DHA 全鱼 whole fish −0.996** 0.849* 0.638
    肌肉 muscle −0.999** 0.976** 0.784
    肝脏 liver −0.981** 0.780 0.798
    腹脂 abdominal fat −0.998** 0.992** 0.978**
    下载: 导出CSV
  • [1]

    Menoyo D, Lopez-Bote C J, Diez A, et al. Impact of n-3 fatty acid chain length and n-3/n-6 ratio in Atlantic salmon (Salmo salar) diets[J]. Aquaculture, 2007, 267(1-4): 248-259. doi: 10.1016/j.aquaculture.2007.02.031

    [2]

    Jump D B. Fatty acid regulation of gene transcription[J]. Critical Reviews in Clinical Laboratory Sciences, 2004, 41(1): 41-78. doi: 10.1080/10408360490278341

    [3]

    Zakeri M, Kochanian P, Marammazi J G, et al. Effects of dietary n-3 HUFA concentrations on spawning performance and fatty acids composition of broodstock, eggs and larvae in yellowfin sea bream, Acanthopagrus latus[J]. Aquaculture, 2011, 310(3-4): 388-394. doi: 10.1016/j.aquaculture.2010.11.009

    [4]

    Tocher D R, Bell J G, Dick J R, et al. Fatty acyl desaturation in isolated hepatocytes from Atlantic salmon (Salmo salar): stimulation by dietary borage oil containing γ-inolenic acid[J]. Lipids, 1997, 32(12): 1237-1247. doi: 10.1007/s11745-006-0159-0

    [5]

    Ruyter B, RØsjØ C, Einen O, et al. Essential fatty acids in Atlantic salmon: Time course of changes in fatty acid composition of liver, blood and carcass induced by a diet deficient in n-3 and n-6 fatty acids[J]. Aquaculture Nutrition, 2000, 6(2): 109-117. doi: 10.1046/j.1365-2095.2000.00136.x

    [6]

    Fountoulaki E, Alexis M N, Nengas I, et al. Effects of dietary arachidonic acid (20:4n-6), on growth, body composition, and tissue fatty acid profile of gilthead bream fingerlings (Sparus aurata L.)[J]. Aquaculture, 2003, 225(1-4): 309-323. doi: 10.1016/S0044-8486(03)00298-9

    [7]

    Yuan Y H, Li S L, Mai K S, et al. The effect of dietary arachidonic acid (ARA) on growth performance, fatty acid composition and expression of ARA metabolism-related genes in larval half-smooth tongue sole (Cynoglossus semilaevis)[J]. British Journal of Nutrition, 2015, 113(10): 1518-1530. doi: 10.1017/S0007114515000781

    [8]

    Thompson K D, Tatner M F, Henderson R J. Effects of dietary (n-3) and (n-6) polyunsaturated fatty acid ratio on the immune response of Atlantic salmon, Salmo salar L[J]. Aquaculture Nutrition, 1996, 2(1): 21-31. doi: 10.1111/j.1365-2095.1996.tb00004.x

    [9]

    Lee S M. Review of the lipid and essential fatty acid requirements of rockfish (Sebastes schlegeli)[J]. Aquaculture Research, 2001, 32(S1): 8-17.

    [10] 谭青, 王际英, 李宝山, 等. n-3/n-6 HUFA对大菱鲆幼鱼生长性能、全鱼脂肪酸组成和血清生化指标的影响[J]. 水产学报, 2018, 42(5): 754-765.

    Tan Q, Wang J Y, Li B S, et al. Effect of dietary n-3/n-6 HUFA on growth performance, fatty acid composition of whole fish and serum biochemical indices in turbot (Scophthalmus maximus)[J]. Journal of Fisheries of China, 2018, 42(5): 754-765(in Chinese).

    [11]

    Eroldoğan T O, Yılmaz A H, Turchini G M, et al. Fatty acid metabolism in European sea bass (Dicentrarchus labrax): Effects of n-6 PUFA and MUFA in fish oil replaced diets[J]. Fish Physiology and Biochemistry, 2013, 39(4): 941-955. doi: 10.1007/s10695-012-9753-7

    [12]

    Lee S M, Lee J Y, Hur S B. Essentiality of dietary eicosapentaenoic acid and docosahexaenoic acid in Korean Rockfish, Sebastes schlegeli[J]. Bulletin of the Japanese Society for the Science of Fish, 1994, 27(6): 721-726.

    [13]

    Palmer R M. Prostaglandins and the control of muscle protein synthesis and degradation[J]. Prostaglandins, Leukotrienes and Essential Fatty Acids, 1990, 39(2): 95-104. doi: 10.1016/0952-3278(90)90017-F

    [14]

    Montero D, Mathlouthi F, Tort L, et al. Replacement of dietary fish oil by vegetable oils affects humoral immunity and expression of pro-inflammatory cytokines genes in gilthead sea bream Sparus aurata[J]. Fish & Shellfish Immunology, 2010, 29(6): 1073-1081.

    [15] 王成强, 梁萌青, 徐后国, 等. 大规格鲈鱼(Lateolabrax japonicas)对饲料中花生四烯酸的需求量[J]. 渔业科学进展, 2016, 37(5): 46-55. doi: 10.11758/yykxjz.201506016001

    Wang C Q, Liang M Q, Xu H G, et al. Requirement of arachidonic acid in adult Japanese seabass (Lateolabrax japonicas)[J]. Progress in Fishery Sciences, 2016, 37(5): 46-55(in Chinese). doi: 10.11758/yykxjz.201506016001

    [16]

    Sessler A M, Kaur N, Palta J P, et al. Regulation of stearoyl-CoA desaturase 1 mRNA stability by polyunsaturated fatty acids in 3T3-L1 adipocytes[J]. The Journal of Biological Chemistry, 1996, 271(47): 29854-29858. doi: 10.1074/jbc.271.47.29854

    [17]

    Liang X F, Ogata H Y, Oku H. Effect of dietary fatty acids on lipoprotein lipase gene expression in the liver and visceral adipose tissue of fed and starved red sea bream Pagrus major[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2002, 132(4): 913-919.

    [18] 程汉良, 夏德全, 吴婷婷. 鱼类脂类代谢调控与脂肪肝[J]. 动物营养学报, 2006, 18(4): 294-298. doi: 10.3969/j.issn.1006-267X.2006.04.013

    Cheng H L, Xia D Q, Wu T T. Fatty liver and regulation of lipids metabolism in fish[J]. Chinese Journal of Animal Nutrition, 2006, 18(4): 294-298(in Chinese). doi: 10.3969/j.issn.1006-267X.2006.04.013

    [19] 艾庆辉, 严晶, 麦康森. 鱼类脂肪与脂肪酸的转运及调控研究进展[J]. 水生生物学报, 2016, 40(4): 859-868. doi: 10.7541/2016.111

    Ai Q H, Yan J, Mai K S. Research progresses of lipids and fatty acids transport in fish[J]. Acta Hydrobiologica Sinica, 2016, 40(4): 859-868(in Chinese). doi: 10.7541/2016.111

    [20] 王成强, 王际英, 黄炳山, 等. 饲料花生四烯酸水平对珍珠龙胆石斑鱼幼鱼生长性能、抗氧化能力、血清生化指标以及肝脏和肌肉脂肪酸组成的影响[J]. 动物营养学报, 2018, 30(9): 3567-3580. doi: 10.3969/j.issn.1006-267x.2018.09.027

    Wang C Q, Wang J Y, Huang B S, et al. Effects of dietary arachidonic acid level on growth performance, antioxidant ability, serum biochemical parameters and fatty acid composition in liver and muscle of juvenile hybrid grouper (Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus♂)[J]. Chinese Journal of Animal Nutrition, 2018, 30(9): 3567-3580(in Chinese). doi: 10.3969/j.issn.1006-267x.2018.09.027

    [21] 林利民, 陈武. 5种海水养殖鱼类肌肉脂肪酸组成分析及营养评价[J]. 福建农业学报, 2005, 20(S1): 67-69.

    Lin L M, Chen W. Fatty acid composition and nutrition evaluation in muscle of five cultured marine fish[J]. Fujian Journal of Agricultural Sciences, 2005, 20(S1): 67-69(in Chinese).

    [22]

    Rodriguez C, Perez J A, Izquierdo M S, et al. Essential fatty acid requirements of larval gilthead sea bream, Sparus aurata (L.)[J]. Aquaculture Research, 1994, 25(3): 295-304. doi: 10.1111/j.1365-2109.1994.tb00692.x

    [23]

    Rainuzzo J R, Reitan K I, Jørgensen L, et al. Lipid composition in turbot larvae fed live feed cultured by emulsions of different lipid classes[J]. Comparative Biochemistry and Physiology Part A: Physiology, 1994, 107(4): 699-710. doi: 10.1016/0300-9629(94)90372-7

    [24]

    Xu H G, Ai Q H, Mai K S, et al. Effects of dietary arachidonic acid on growth performance, survival, immune response and tissue fatty acid composition of juvenile Japanese seabass, Lateolabrax japonicus[J]. Aquaculture, 2010, 307(1-2): 75-82. doi: 10.1016/j.aquaculture.2010.07.001

    [25]

    Codabaccus B M, Bridle A R, Nichols P D, et al. An extended feeding history with a stearidonic acid enriched diet from parr to smolt increases n-3 long-chain polyunsaturated fatty acids biosynthesis in white muscle and liver of Atlantic salmon (Salmo salar L.)[J]. Aquaculture, 2011, 322-323: 65-73. doi: 10.1016/j.aquaculture.2011.09.014

    [26] 乔芳, 李欢, 李东亮, 等. 冬夏两季五种经济鱼类组织脂肪酸含量及组成分析[J]. 水产学报, 2018, 42(1): 80-90.

    Qiao F, Li H, Li D L, et al. Comparative analysis of fatty acid profiles in different tissues of five economic fish species in winter and summer[J]. Journal of Fisheries of China, 2018, 42(1): 80-90(in Chinese).

    [27]

    Tocher D R, Fonseca-Madrigal J, Bell J G, et al. Effects of diets containing linseed oil on fatty acid desaturation and oxidation in hepatocytes and intestinal enterocytes in Atlantic salmon (Salmo salar)[J]. Fish Physiology and Biochemistry, 2002, 26(2): 157-170. doi: 10.1023/A:1025416731014

    [28]

    Trushenski J, Schwarz M, Lewis H, et al. Effect of replacing dietary fish oil with soybean oil on production performance and fillet lipid and fatty acid composition of juvenile cobia Rachycentron canadum[J]. Aquaculture Nutrition, 2011, 17(2): e437-e447. doi: 10.1111/j.1365-2095.2010.00779.x

    [29]

    Skalli A, Robin J H. Requirement of n-3 long chain polyunsaturated fatty acids for European sea bass (Dicentrarchus labrax) juveniles: Growth and fatty acid composition[J]. Aquaculture, 2004, 240(1-4): 399-415. doi: 10.1016/j.aquaculture.2004.06.036

    [30]

    Montero D, Robaina L, Caballero M J, et al. Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils: A time-course study on the effect of a re-feeding period with a 100% fish oil diet[J]. Aquaculture, 2005, 248(1-4): 121-134. doi: 10.1016/j.aquaculture.2005.03.003

    [31] 代小芳, 叶元土, 蔡春芳, 等. 苹果籽、南瓜籽饲料脂肪酸组成与团头鲂鱼体脂肪酸组成相关性研究[J]. 中国油脂, 2011, 36(3): 38-44.

    Dai X F, Ye Y T, Cai C F, et al. Correlation between the fatty acid composition of the feed added apple seeds and pumpkin seeds and that of Megalobrama amblycephala[J]. China Oils and Fats, 2011, 36(3): 38-44(in Chinese).

    [32]

    Xue M, Luo L, Wu X F, et al. Effects of six alternative lipid sources on growth and tissue fatty acid composition in Japanese sea bass (Lateolabrax japonicus)[J]. Aquaculture, 2006, 260(1-4): 206-214. doi: 10.1016/j.aquaculture.2006.05.054

    [33]

    Villalta M, Estévez A, Bransden M P. Arachidonic acid enriched live prey induces albinism in Senegal sole (Solea senegalensis) larvae[J]. Aquaculture, 2005, 245(1-4): 193-209. doi: 10.1016/j.aquaculture.2004.11.035

    [34]

    Bae J Y, Kim D J, Yoo K Y, et al. Effects of dietary arachidonic acid (20:4n-6) levels on growth performance and fatty acid composition of juvenile eel, Anguilla japonica[J]. Asian-Australasian Journal of Animal Sciences, 2010, 23(4): 508-514. doi: 10.5713/ajas.2010.90491

    [35]

    Ma H N, Jin M, Zhu T T, et al. Effect of dietary arachidonic acid levels on growth performance, fatty acid profiles and lipid metabolism of juvenile yellow catfish (Pelteobagrus fulvidraco)[J]. Aquaculture, 2018, 486: 31-41. doi: 10.1016/j.aquaculture.2017.11.055

    [36]

    Lewis R A, Lee T H, Austen K F. Effects of omega-3 fatty acids on the generation of products of the 5-lipoxygenase pathway[M]//Simopoulos A P, Kifer R R, Martin R E. Health Effects of Polyunsaturated Fatty Acids in Seafoods. Orlando, FL: Academic Press, 1986: 227-238.

  • 期刊类型引用(0)

    其他类型引用(2)

图(2)  /  表(10)
计量
  • 文章访问数: 
  • PDF下载量: 
  • 被引次数: 2
出版历程
  • 通讯作者:  王际英 ytwjy@126.com
  • 收稿日期:  2019-09-18
  • 修回日期:  2019-09-28
  • 网络出版日期:  2019-09-29
  • 发布日期:  2019-09-30

目录

/

返回文章
返回