弓背青鳉早期胚胎色素细胞发生及相关基因表达规律分析
Development of pigment cells and analysis of the expression of related genes in the early embryo of Oryzias curvinotus
-
鱼类的体色丰富多彩,具有躲避捕食者、吸引同类、保护鱼类皮肤免受紫外线伤害等重要作用。斑马鱼(Denio rerio)、日本青鳉(Oryzias latipes)等胚胎发育的周期短,且具有多种色素细胞类型,是研究色素细胞的理想材料[1-7]。鱼类色素细胞由胚胎中的神经嵴发展而来[8],早期发育阶段可见点状分布于脊索上方,起到吸收紫外光,保护神经索的作用[9]。至今,对于黑色素合成相关的slc24a5、wnt、tyr和mitf [10-12]及虹彩色素细胞合成相关的sox10、pax3和alk [13-15]都有较为系统的研究,它们通过有序表达调控色素细胞的发生。
弓背青鳉(O. curvinotus)是一种结群活动于水体上层的小型卵生鱼类,在我国南海沿岸的多个红树林海区均有分布,具有开发为广盐性模式鱼类的潜力。弓背青鳉性成熟时间短,在人工繁育条件下,3月龄弓背青鳉便可全年产卵。目前已有弓背青鳉资源普查[16-17]、发育及功能等研究[18-20],尚无色素细胞发生的基础资料。本项目组开展转基因研究时发现,弓背青鳉的胚胎发育至12肌节期后,虹彩色素细胞呈现绿色荧光,对转基因系荧光信号形成干扰[20]。
本实验通过对弓背青鳉不同地理群体的早期胚胎进行色素细胞发生发育观察,以及对相关色素基因进行时间表达规律分析,研究其胚胎时期色素细胞生长发育情况,进一步了解不同纬度地理群体弓背青鳉色素发生发育调控机制,为弓背青鳉胚胎实验提供基础。
1. 材料与方法
1.1 实验鱼
本实验所用的弓背青鳉用手抄网采集于广东省廉江市高桥镇、潮州市饶平县及三亚市三亚河口的红树林区域,运回实验室进行淡水驯养繁育,目前已繁育至F6。繁养水温控制在26 °C,光暗周期比为14 h∶10 h,每日定时喂食丰年虫幼体2次[21]。
1.2 鱼卵采集
随机抽取上述3个地理群体F5的弓背青鳉雌、雄各4尾,实验前1天将雌、雄亲鱼分开,次日早晨将雌、雄亲鱼以1∶1混在一起,约30 min产卵受精。为观察到受精卵色素细胞的发育过程,本实验在受精完成后将受精卵取下,并剥离卵间黏连的长丝。
1.3 胚胎发育过程观察
取受精卵置于体式荧光显微镜下,连续观察其发育过程。观察间隔设定参考研究[20]。在发育前期,每5~10 min观察1次,达到肌节期后1 h观察1次,记录从黑色素细胞开始出现至虹彩色素细胞完全出现的时期,并分别选取相应时期典型的特征形态拍照记录,通过软件Image J融合分析,各群体各个时期的胚胎以15~30个为1组,使用RNA-later保存液保存备用。
1.4 RNA提取及反转录
使用TRIzol(Invitrogen)法提取高桥群体上述相应时期胚胎的总RNA。1.0%琼脂糖凝胶电泳检测RNA的完整性和丰度,并使用Nanodrop2000核酸定量仪检测RNA的浓度及A260/A280值。使用反转录试剂盒(TaKaRa)对提取的RNA进行反转录。
1.5 引物设计合成及实时荧光定量PCR (qRT-PCR)
根据转录组数据,找出色素细胞基因alk (Gene ID: evm.TU.Chr19.634)、sox10 (Gene ID: evm.TU.Chr1.300)、pax3 (Gene ID: evm.TU.Chr2.1072)及tyr (Gene ID: evm.TU.Chr6.796) CDs区序列,使用Aligo 7软件进行引物设计(表1),委托生工生物工程(上海)股份有限公司合成。
表 1 qRT-PCR引物序列Table 1. The primers for qRT-PCR引物名称
primers name序列
sequencesalk-F 5′-TAAACTCTCTGCTGCAAATGGCT-3′ alk-R 5′-GCAGGAGTTAAACCACCACGTCA-3′ sox10-F 5′-AGACTCTGGGCAAACTGTGG-3′ sox10-R 5′-CCTTCTTGTGCTGCTTCCTC-3′ pax3-F 5′-CGGACTATTTCCAACACCACAG-3′ pax3-R 5′-CGAACACGATGTAGAAGTAAGCG-3′ tyr-F 5′-GTAACCCTGGAAACCACAACC-3′ tyr-R 5′-CAGACGAGAACTGCTACCCAAC-3′ rps4x-F 5′-GAAACACTGGATGCTGGATAAG-3′ rps4x-R 5′-ACTTCAGGCGGTTCCTCAGG-3′ 采用SYBR Green ⅠqRT-PCR对各个样品中的色素基因表达量进行检测,设3个不同样品的平行对照。选择rps4x作为内参基因[22]。PCR扩增体系为15 μL,其中PCR Mix (东盛生物科技公司) 7.5 μL,正反引物(10 μmol/L)各0.3 μL,cDNA(5 ng/μL) 2 μL,ddH2O 4.9 μL。反应于 Roche Light Cycler 96 定量仪 (罗氏,瑞士) 完成,反应程序:94 °C 2 min预变性;94 °C 1 min,60 °C 1 min,72 °C 1 min,40个循环;最后72 °C延伸10 min。反应结束后进行熔解曲线的制作,熔解曲线的温度设为60~95 °C,每隔5 s升温0.5 °C,检测是否有非特异扩增。
1.6 数据分析
通过qRT-PCR对弓背青鳉高桥群体4个色素细胞发生相关基因在不同发育时期(6~10、12和14肌节期)的表达情况进行检测,利用定量PCR自带的LightCycler® 96 SW 1.1软件分析其熔解曲线。采用2−ΔΔCT方法分析不同时期各基因的相对表达水平[23],所得数据用GraphPad Prism 7软件作图。
2. 结果
2.1 弓背青鳉色素细胞发育阶段统计
对弓背青鳉不同地理群体F6进行胚胎色素发生观察,结果显示,饶平群体黑色素细胞(统计共105颗受精卵)与虹彩色素细胞(统计共140颗受精卵)集中出现于8肌节期与10肌节期,分别占81.9 %与52.1 %;高桥群体的黑色素细胞(统计共253颗受精卵)与虹彩色素细胞(统计共307颗受精卵)集中出现于7肌节期与11肌节期,分别占47.7 %和42.1 %;而三亚群体黑色素细胞(统计共225颗受精卵)与虹彩色素细胞(共统计241颗受精卵)集中出现于8肌节期与12肌节期,占44 %和62.2 %。3个不同纬度的地理群体在相同环境养殖下,其黑色素细胞与虹彩色素细胞的发生时间存在群体分化差异(图1),即随纬度降低,黑色素细胞和虹彩色素细胞发生时间推后。
通过体式荧光显微镜对高桥群体弓背青鳉早期胚胎进行观察,结果显示,弓背青鳉高桥群体在6肌节期开始出现黑色素细胞,成块状分布于胚体与卵黄;而虹彩色素细胞出现于9肌节期,首先出现于头部,随后便成点状分布于头部与体节(图版)。
图版 弓背青鳉高桥群体早期胚胎黑色素和虹彩色素发生1~3. 6~8肌节期;4~13. 9、10、12和14肌节期;1~3,4,7,10,13. 白光;5,8,11,14. ImageJ融合;6,9,12,15. 绿色荧光;M. 黑色素细胞;gp. 虹彩色素细胞图版. Development of early embryogenesis of melanin and iridescent pigment of O. curvinotus from Gaoqiao1-3. 6-9 somites stages; 4-13. 9,10,12 and 14-somite stages; 1~3, 4, 7, 10, 13. white light; 5, 8, 11, 14. merged by ImageJ; 6, 9, 12, 15. green fluorescence; M. melanophores; gp. iridophores2.2 高桥群体中色素细胞相关基因在早期发育的表达情况
qRT-PCR结果显示,黑色素形成相关限速酶基因tyr表达水平在7~9肌节期呈现明显上调,随后趋缓;而sox10和pax3与下游的alk在10~14肌节期呈现一致的表达模式,均在12肌节期达到峰值(图2- a)。tyr作为黑色素相关关键基因,对黑色素的合成表达具有直接影响作用。在早期研究中,sox10与pax3在胚胎发育过程中的表达维持被认为是延迟黑色素的分化。同时sox10与pax3对虹彩色素细胞启动分化具有一定的促进作用,与alk共同调控虹彩色素细胞的表达。sox10、pax3、alk与tyr的表达与虹彩色素细胞和黑色素细胞的发生次序一致性良好,符合鱼类色素发育的经典调控模式(图2- b)。
3. 讨论
3.1 色素细胞发生相关基因的时序表达模式
色素细胞为动物提供复杂的颜色以吸引异性、躲避攻击,是进化过程中性选择和自然选择的结果。相对于人类仅保留着黑色素,许多鱼类拥有多种色素,其发育、进化以及相关基因表达模式吸引着众多学者研究,一直是生物学研究的热点。
本研究对弓背青鳉高桥群体4个色素基因(alk、sox10、pax3和tyr)进行荧光定量分析,结果显示,在胚胎色素发育过程中,以上4个基因均有表达。tyr作为一种限速酶基因,是黑色素合成表达的关键基因,直接影响着黑色素的合成[24],tyr突变会导致斑马鱼皮肤黑色素缺失[25]。本实验定量结果显示,tyr表达水平在7~9肌节期呈现明显上调,随后趋缓。对弓背青鳉高桥群体胚胎色素发育观察发现,黑色素从6肌节期开始出现,与荧光定量结果相符。
ALK与LTK均属于受体酪氨酸酶(RTK)超家族,具有相同的MAM结构域。Lopes等[26]通过细胞移植基因敲除实验发现了虹彩色素细胞新的信号通路,并证明了在斑马鱼中的白细胞酪氨酸激酶基因(ltk)是色素细胞分化为虹彩色素细胞的一个重要基因,同时该研究表明ltk与间变性淋巴瘤激酶配体基因(alkals)缺失会导致斑马鱼胚胎与成年斑马鱼虹膜结构受到破坏,证明二者共同诱导从神经嵴细胞和色素前体细胞分化出虹彩色素细胞。我们在对弓背青鳉转录组进行分析时发现,在弓背青鳉中ltk缺失,促使与之同源性最高的间变性淋巴瘤激酶基因(alk)可能成为诱导虹彩细胞表达的下游基因,调控虹彩色素细胞的表达。
sox10和pax3通过物理作用可协同激活黑色素相关基因mitfa的表达,但只能短暂发挥调节作用,不能长期维持其表达,其表达的维持被认为是促进多能性与延迟黑色素的分化[27-29]。Petratou等[15]通过基因敲除实验验证了缺失sox10的斑马鱼在表达虹彩色素细胞上出现缺失,导致虹彩色素细胞表达失败,证明sox10与pax3在虹彩色素细胞的分化过程中起关键作用。结合本研究qRT-PCR结果可以发现,sox10和pax3与下游的alk在10~14肌节期均呈现一致的单峰模式,猜测弓背青鳉的sox10、pax3与下游基因alk共同抑制黑色素,启动虹彩色素细胞的分化与表达。
综上所述,实验通过分析弓背青鳉高桥群体早期胚胎色素细胞发生相关基因的表达模式,发现黑色素细胞与虹彩色素细胞相关色素基因均通过协同作用进行调节,相关基因与色素细胞发生次序一致性良好,符合鱼类色素发育的经典调控模式。实验结果为研究弓背青鳉早期胚胎色素发育提供了参考依据,为后期对相关色素基因进行基因编辑提供基础资料。
3.2 色素细胞出现时间差异提示群体遗传分化
自然界中,种群个体形态异质性是物种的重要适应性之一,其形态上的差异对种群能更加多样化地利用资源、繁殖后代和适应环境提供保障。本研究通过对弓背青鳉F6进行早期胚胎色素发育观察,结果显示,不同地区的弓背青鳉其色素发生时间不一致,纬度最高的饶平弓背青鳉群体的虹彩色素细胞出现得最早,10肌节期开始集中出现,纬度最低的三亚群体在12肌节期集中出现虹彩色素细胞。而黑色素在3个群体中均在7、8肌节期开始出现。色素细胞出现时间存在差异,支持弓背青鳉在不同纬度地区出现群体遗传分化。
大量研究表明,光线对鱼类体色存在明显的影响,如邹旭龙[30]通过对锦鲤(Cyprinus carpio var. koi)进行长时间光照处理使锦鲤体色产生显著变化;弱光条件下锦鲤产生环境应激,证明光照环境在一定程度上会对鱼类生长与体色的发育造成影响。Han等[31]通过使用不同级别照明对长吻鮠(Leiocassis longirostris)进行光照处理,结果显示光照强度对长吻鮠的生长发育有显著影响,长吻鮠在312 lx的光强度下有更高的生长率和存活率,而434 lx的光强度下幼鱼的皮肤体色变暗。Ginés等[32]对金头鲷(Sparus aurata)使用不同的光照周期进行实验,结果显示,金头鲷的皮肤颜色与光照时间正相关。本研究分析的弓背青鳉的胚胎发育阶段,尚不涉及性选择,处于较高纬度的饶平地区的弓背青鳉胚胎更早出现虹彩色素细胞的原因推测可能为光照、气温等自然条件的长期选择压力下,自然群体间缺乏基因交流造成适应性分化。
综上,通过对弓背青鳉3个地理群体F6胚胎色素细胞进行观察及对高桥群体F6进行qRT-PCR分析,结果显示,弓背青鳉早期黑色素与虹彩色素细胞发育发生过程服从鱼类色素细胞发生的经典通路,且3个不同地理群体弓背青鳉色素细胞发生时间出现差异,符合群体遗传分化,但其具体机制需进一步研究。
-
图版 弓背青鳉高桥群体早期胚胎黑色素和虹彩色素发生
1~3. 6~8肌节期;4~13. 9、10、12和14肌节期;1~3,4,7,10,13. 白光;5,8,11,14. ImageJ融合;6,9,12,15. 绿色荧光;M. 黑色素细胞;gp. 虹彩色素细胞
图版. Development of early embryogenesis of melanin and iridescent pigment of O. curvinotus from Gaoqiao
1-3. 6-9 somites stages; 4-13. 9,10,12 and 14-somite stages; 1~3, 4, 7, 10, 13. white light; 5, 8, 11, 14. merged by ImageJ; 6, 9, 12, 15. green fluorescence; M. melanophores; gp. iridophores
表 1 qRT-PCR引物序列
Table 1 The primers for qRT-PCR
引物名称
primers name序列
sequencesalk-F 5′-TAAACTCTCTGCTGCAAATGGCT-3′ alk-R 5′-GCAGGAGTTAAACCACCACGTCA-3′ sox10-F 5′-AGACTCTGGGCAAACTGTGG-3′ sox10-R 5′-CCTTCTTGTGCTGCTTCCTC-3′ pax3-F 5′-CGGACTATTTCCAACACCACAG-3′ pax3-R 5′-CGAACACGATGTAGAAGTAAGCG-3′ tyr-F 5′-GTAACCCTGGAAACCACAACC-3′ tyr-R 5′-CAGACGAGAACTGCTACCCAAC-3′ rps4x-F 5′-GAAACACTGGATGCTGGATAAG-3′ rps4x-R 5′-ACTTCAGGCGGTTCCTCAGG-3′ -
[1] 胡玉婷, 杨少荣, 黎明政, 等. 鄱阳湖及洞庭湖红鳍原鲌的群体分化研究[J]. 水生生物学报, 2015, 39(1): 13-23. doi: 10.7541/2015.2 Hu Y T, Yang S R, Li M Z, et al. Population differentiation of Cultrichthys erythropterus in Poyang Lake and Dongting Lake[J]. Acta Hydrobiologica Sinica, 2015, 39(1): 13-23(in Chinese). doi: 10.7541/2015.2
[2] Lang D, Epstein J A. Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer[J]. Human Molecular Genetics, 2003, 12(8): 937-945. doi: 10.1093/hmg/ddg107
[3] Curran K, Lister J A, Kunkel G R, et al. Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest[J]. Developmental Biology, 2010, 344(1): 107-118. doi: 10.1016/j.ydbio.2010.04.023
[4] Lamoreux M L, Kelsh R N, Wakamatsu Y, et al. Pigment pattern formation in the medaka embryo[J]. Pigment Cell Research, 2005, 18(2): 64-73. doi: 10.1111/j.1600-0749.2005.00216.x
[5] Kimura T, Nagao Y, Hashimoto H, et al. Leucophores are similar to xanthophores in their specification and differentiation processes in medaka[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(20): 7343-7348. doi: 10.1073/pnas.1311254111
[6] Fadeev A, Krauss J, Singh A P, et al. Zebrafish Leucocyte tyrosine kinase controls iridophore establishment, proliferation and survival[J]. Pigment Cell & Melanoma Research, 2016, 29(3): 284-296.
[7] Patterson L B, Parichy D M. Zebrafish pigment pattern formation: insights into the development and evolution of adult form[J]. Annual Review of Genetics, 2019, 53(1): 505-530. doi: 10.1146/annurev-genet-112618-043741
[8] Rawles M E. Origin of pigment cells from the neural crest in the mouse embryo[J]. Physiological Zoology, 1947, 20(3): 248-266. doi: 10.1086/physzool.20.3.30151958
[9] 刘筠. 中国养殖鱼类繁殖生理学[M]. 北京: 农业出版社, 1993: 81-89. Liu Y. Reproductive physiology of cultured fish in China[M]. Beijing: China Agriculture Press, 1993: 81-89 (in Chinese).
[10] Koga A, Inagaki H, Bessho Y, et al. Insertion of a novel transposable element in the tyrosinase gene is responsible for an albino mutation in the medaka fish, Oryzias latipes[J]. Molecular & General Genetics, 1995, 249(4): 400-405.
[11] Iida A, Inagaki H, Suzuki M, et al. The tyrosinase gene of the ib albino mutant of the medaka fish carries a transposable element insertion in the promoter region[J]. Pigment Cell Research, 2004, 17(2): 158-164. doi: 10.1046/j.1600-0749.2003.00122.x
[12] Lamason R L, Mohideen M A P K, Mest J R, et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans[J]. Science, 2005, 310(5755): 1782-1786. doi: 10.1126/science.1116238
[13] Frohnhöfer H G, Krauss J, Maischein H M, et al. Iridophores and their interactions with other chromatophores are required for stripe formation in zebrafish[J]. Development, 2013, 140(14): 2997-3007. doi: 10.1242/dev.096719
[14] McGowan K A, Barsh G S. How the zebrafish got its stripes[J]. eLife, 2016, 5: e14239. doi: 10.7554/eLife.14239
[15] Petratou K, Subkhankulova T, Lister J A, et al. A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest[J]. PLoS Genetics, 2018, 14(10): e1007402. doi: 10.1371/journal.pgen.1007402
[16] Tran H D, Ta T T. Dependence of Hainan medaka, Oryzias curvinotus (Nichols & Pope, 1927), on salinity in the Tien Yen estuary of northern Vietnam[J]. Animal Biology, 2016, 66(1): 49-64. doi: 10.1163/15707563-00002486
[17] Wang Z, et al. Complete mitogenome of Hainan medaka Oryzias curvinotus (Teleostei: Beloniformes) and transcriptional differences between male and female liver[J]. Mitochondrial DNA Part B, 2017, 2(1): 157-158. doi: 10.1080/23802359.2017.1303340
[18] 廖健. 雷州半岛红树林区仔稚幼鱼多样性及弓背青鳉对壬基酚的响应[D]. 湛江: 广东海洋大学, 2017. Liao J. Species diversity of larvae fish in mangrove of Leizhou peninsula and the response of Oryzias curvinotus to Nonylphenol[D]. Zhanjiang: Guangdong Ocean University, 2017 (in Chinese).
[19] 黄顺楷, 郭昱嵩, 汪淳, 等. 弓背青鳉3种雌激素受体基因的克隆及其表达分析[J]. 广东海洋大学学报, 2019, 39(2): 8-19. Huang S K, Guo Y S, Wang C, et al. Cloning and expression analysis of three estrogen receptor genes in Hainan medaka[J]. Journal of Guangdong Ocean University, 2019, 39(2): 8-19(in Chinese).
[20] 张海瑞, 王中铎, 黄顺楷, 等. 弓背青鳉的胚胎发育及自发荧光观察[J]. 广东海洋大学学报, 2019, 39(2): 38-44. Zhang H R, Wang Z D, Wang S K, et al. Observation of embryonic development and autofluorescence of Oryzias curvinotus[J]. Journal of Guangdong Ocean University, 2019, 39(2): 38-44(in Chinese).
[21] Kinoshita Masato, Murata Kenji, Naruse Kiyoshi, et al. Medaka: biology, management, and experimental protocols[M]. John Wiley & Sons, Ltd. : 2009: 54-60.
[22] Dong Z D, Chen P S, Zhang N, et al. Evaluation of reference genes for quantitative real-time PCR analysis of gene expression in Hainan medaka (Oryzias curvinotus)[J]. Gene Reports, 2019, 14: 94-99. doi: 10.1016/j.genrep.2018.11.008
[23] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T Method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
[24] Krauss J, Geiger-Rudolph S, Koch I, et al. A dominant mutation in tyrp1A leads to melanophore death in zebrafish[J]. Pigment Cell & Melanoma Research, 2014, 27(5): 827-830.
[25] 徐伟, 封竣淇, 黄兰, 等. TYR基因研究进展[J]. 中国畜牧杂志, 2017, 53(4): 23-27. Xu W, Feng J Q, Huang L, et al. Research progress on TYR gene[J]. Chinese Journal of Animal Science, 2017, 53(4): 23-27.
[26] Lopes S S, Yang X Y, Müller J, et al. Leukocyte tyrosine kinase functions in pigment cell development[J]. PLoS Genetics, 2008, 4(3): e1000026. doi: 10.1371/journal.pgen.1000026
[27] Galibert M D, Dexter T J, Goding C R, et al. Pax3 and regulation of the melanocyte-specific tyrosinase-related protein-1 promoter[J]. Journal of Biological Chemistry, 1999, 274(38): 26894-26900. doi: 10.1074/jbc.274.38.26894
[28] Ling H, William J P. Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf?[J]. Cell Research, 2008, 18(12): 1163-1176. doi: 10.1038/cr.2008.303
[29] Greenhill E R, Rocco A, Vibert L, et al. An iterative genetic and dynamical modelling approach identifies novel features of the gene regulatory network underlying melanocyte development[J]. PLoS Genetics, 2011, 7(9): e1002265. doi: 10.1371/journal.pgen.1002265
[30] 邹旭龙. 几种环境因子对锦鲤生长及体色影响的研究[D]. 大连: 大连海洋大学, 2016. Zou X L. Effects of several environmental factors on growth and skin color of Koi carp (Cyprinus carpio var. Koi)[D]. Dalian: Dalian Ocean University, 2016 (in Chinese).
[31] Han D, Xie S Q, Lei W, et al. Effect of light intensity on growth, survival and skin color of juvenile Chinese longsnout catfish (Leiocassis longirostris Günther)[J]. Aquaculture, 2005, 248(1-4): 299-306. doi: 10.1016/j.aquaculture.2005.03.016
[32] Ginés R, Afonso J M, Argüello A, et al. The effects of long-day photoperiod on growth, body composition and skin colour in immature gilthead sea bream (Sparus aurata L.)[J]. Aquaculture Research, 2004, 35(13): 1207-1212. doi: 10.1111/j.1365-2109.2004.01126.x
-
期刊类型引用(0)
其他类型引用(2)