投喂策略对牛蛙蝌蚪生长发育及肝肠功能的影响
为研究投喂策略对牛蛙蝌蚪生长发育的影响,建立科学的投喂标准,实验分别设置了4种投喂频率(1 、2 、3 和4 次/d)与4个投喂水平(4%、6%、8%和10%)饲养牛蛙蝌蚪,以探究牛蛙蝌蚪合适的投喂策略。投喂频率实验表明,投喂3 次/d或4 次/d的牛蛙蝌蚪在实验周期内的变态率显著高于投喂1 次/d或2 次/d的牛蛙蝌蚪,且投喂3 次/d的牛蛙蝌蚪增重率最大。变态率与投喂量的比值(MFR)随投喂频率增加而上升,2、3或4 次/d显著高于1 次/d。投喂频率对已变态牛蛙蝌蚪的肝脏组织结构及肠道蛋白酶、脂肪酶、淀粉酶活性无显著影响。投喂水产实验结果显示,实验周期内牛蛙蝌蚪变态率随投喂水平增加而上升,且8%与10%组已变态牛蛙蝌蚪的均重显著高于4%与6%组,但已变态牛蛙蝌蚪肠道蛋白酶活性随投喂水平升高而降低。8%与10%组已变态牛蛙蝌蚪肝细胞脂滴含量明显增多,脂肪沉积现象明显。8%投喂水平组有益菌属暖绳菌属(绿弯菌门)与鲸杆菌属(梭杆菌门)相对丰度较高,一定程度改善了肠道微生物结构。研究表明,牛蛙蝌蚪每日投喂3次,综合投喂水平8%左右,蝌蚪的生长发育性能较优,兼顾了牛蛙养殖生产效益与蝌蚪肝肠健康,促进了牛蛙产业健康发展。
Effects of feeding strategies on growth and development, liver and intestinal function of Lithobates catesbeiana tadpoles
-
牛蛙(Lithobates catesbeiana),属两栖纲(Amphibian)无尾目(Anura)蛙科(Ranidae),具有个体大、生长快、适应性强等特点,且肉质鲜美,广受市场喜爱。近几年牛蛙产业发展迅速,养殖量逐渐增多。牛蛙蝌蚪人工养殖是牛蛙高效健康增养的重要环节,但牛蛙蝌蚪养殖技术尚处于薄弱环节,变态率是考察牛蛙蝌蚪养殖的重要指标,生长发育速率及机体健康程度与变态率息息相关,传统经验式的投喂策略可能会导致牛蛙蝌蚪摄食不足或过量,影响机体对营养物质的消化吸收及内部器官的发育,最终导致生长发育速度慢、变态后体重较轻、免疫力差以及水体易败坏等问题。投喂频率与投喂水平是投喂策略中关键的内容,适宜的投喂频率能够促进养殖品种的生长发育,缩小个体发育差异[1-3];恰当的投喂水平可以提高增重率、优化饵料系数、减轻水环境污染[4-5]。本实验以生长发育、肝肠功能及健康为评价指标,探究牛蛙蝌蚪科学的投喂策略,以期提高牛蛙生产效益。
1. 材料与方法
1.1 饲料及动物
投喂所选用的饲料为源信牌商业牛蛙蝌蚪粉料(粗蛋白≥41.0%,粗脂肪≥4.0%),鱼粉及豆粕为主要蛋白源,鱼油为主要脂肪源。牛蛙蝌蚪取自广西南宁青秀区长塘镇喜农牛蛙养殖厂,分苗前在大棚帆布池(4.8 m×2.7 m×0.65 m)循环水系统中暂养10 d。本研究获得了湖南农业大学生物医学研究伦理委员会批准,实验参与人员严格遵守道德伦理规范,并按照湖南农业大学生物医学研究伦理委员会制定的规章制度执行。
1.2 实验设计
在大棚帆布池中按照3×4居中随机排列搭建实验网箱。投喂频率共设计4个处理组,分别为1 次/d(12:00)、2 次/d(6:00和18:00)、3 次/d(6:00、12:00和18:00)和4 次/天(6:00、10:00、14:00和18:00),分别记为F1、F2、F3和F4组,每组分别设置3个80目网箱(0.8 m×0.8 m×0.8 m),每个网箱放养规格均匀的400尾健康牛蛙蝌蚪[均重(0.05±0.00) g]。养殖实验持续65 d,期间各组每日总投喂量一致,每次投喂量根据投喂频率平均分配,牛蛙蝌蚪日投饵率为体重的5%~7%,每周根据摄食情况与体重调整投饵率。
投喂水平共设计4个处理组,分别为体重的4%、6%、8%和10%,分别记为P4、P6、P8和P10组,每日投喂3次(7:00、12:00和17:00),每组3个网箱。放养牛蛙蝌蚪均重及尾数与投喂频率实验保持一致。养殖实验持续65 d,每周牛蛙蝌蚪打样称重一次,根据均重与投饵率更正日投喂量。整个实验期间平均气温32.9 °C、平均水温29.5 °C,溶解氧≥4.0 mg/L,pH 7.0~7.6。
1.3 样本采集
在养殖到第45天(第1尾牛蛙蝌蚪完成变态)后,连续3周(第45~51天、第52~58天、第59~65天)统计已完成变态牛蛙蝌蚪(完全缩尾)的数量及重量,用于计算实验周期内累计变态率与总变态率(以下简称累计变态率与总变态率)。每箱随机取18只已完成变态牛蛙蝌蚪的肝脏、肠道组织检测相应酶活性,每箱随机取3只未完成变态牛蛙蝌蚪的肠道内容物分析菌群组成,以上样品均用液氮速冷后放入−80 °C超低温冰箱储存。每箱随机取3只已完成变态牛蛙蝌蚪取肝脏组织,用多聚甲醛溶液固定,制作H.E染色切片。
1.4 样本检测及分析
肠道胰蛋白酶(PR)、脂肪酶(LPS)、淀粉酶(AMS)、酸性磷酸酶(ACP)、碱性磷酸酶(AKP)及肝脏谷胱甘肽(GSH)检测试剂盒均购自南京建成生物技术研究所,测定步骤按说明书进行。参考李会峰等[6]的方法对肝脏进行切片制作。
在本实验中,投喂水平实验对牛蛙蝌蚪生长发育、消化酶活性、肝脏组织结构产生了更大的影响,因此参考周楠楠等[7]的方法对投喂水平实验中牛蛙蝌蚪进行肠道菌群分析。
1.5 计算公式
不同时间点累计变态率(cumulative metamorphosis rate, CMR, %)=Nn/N0×100%;
不同采样周已完成变态牛蛙蝌蚪均重(average weight of froglets, FAW, g/只)=Wn/Nn;
牛蛙蝌蚪均重(average weight, AW, g/尾)=W/N;
增重率(weight gain rate, WGR, %)=(Wa−W0)/W0×100%;
存活率(survival rate, SR, %)=Nt/N0×100%;
饵料系数(feed conversation rate, FCR, g/g)=(Fw×1 000/N0)/(Wa−W0);
变态投喂比(metamorphosis number to feed weight rate, MFR, 只/kg)=Nm/Fw。
式中,Nn为各阶段累计已完成变态牛蛙蝌蚪数(只);N0为初始牛蛙蝌蚪尾数(尾);Wn为各采样周已完成变态牛蛙蝌蚪总重(g)。W为未完成变态或已完成变态的牛蛙蝌蚪总重量(g);N为对应未完成变态或已完成变态牛蛙蝌蚪数(尾);Wa为未完成变态与完成变态牛蛙蝌蚪总均重(g),W0为初始牛蛙蝌蚪均重(g),Nt为总存活尾数(尾),Nm为已完成变态牛蛙蝌蚪数(只),Fw为饲料投喂总重量(kg)。
1.6 数据分析
采用SPSS Statistics 24软件对数据进行处理及分析。对实验数据先进行正态性检验和方差齐性检验,满足正态分布和方差齐性后进行单因素方差分析(One-Way ANOVA),若差异显著,则进行Duncan氏法多重比较,显著水平P=0.05,数据均采用“平均值±标准误”(mean±SE)表示。
2. 结果
2.1 投喂频率与投喂水平对牛蛙蝌蚪变态率及不同时期已完成变态牛蛙蝌蚪体重的影响
牛蛙蝌蚪不同时间点累计变态率与投喂频率及投喂水平均为正相关。投喂频率F3、F4组牛蛙蝌蚪在第51天、58天、65天的累计变态率均显著高于F1和F2组(P<0.05),并且F3与F4组在不同时间点的累计变态率无显著差异(P>0.05),在第65天时,F3与F4组累计变态率均达到了53%,而F1与F2组分别为40%与46%。在投喂水平实验中,P8与P10组不同时间点累计变态率均高于P4与P6组(P<0.05),P4组第51天的累计变态率为0,显著低于其他3组(P<0.05),表明适宜的投喂水平可以使牛蛙蝌蚪变态期提前。在第65天时,P10组的累计变态率最高(P<0.05),达到了61.08%,而P4组仅为31.08%(图1)。
通过对比同一处理组不同时期牛蛙蝌蚪变态均重发现(图2),F1、F2组从变态采样第2周开始,已完成变态牛蛙蝌蚪均重呈下降趋势,F3、F4组则在第3周开始下降(P<0.05)。投喂水平实验中,P6与P8组3个采样周完成变态的牛蛙蝌蚪均重无显著差异(P>0.05),P10组第3周完成变态的牛蛙蝌蚪均重显著低于前2周(P<0.05)。对比同一周不同处理组牛蛙蝌蚪变态均重发现,4个投喂频率组分别在3个采样周内完成变态牛蛙蝌蚪的均重均无显著性差异(P>0.05)。每个采样周的4个投喂水平组完成变态均重均随着投喂水平的升高而显著升高(P<0.05)
2.2 投喂频率与投喂水平对牛蛙蝌蚪生长性能的影响
如表1所示,F2、F3、F4组未完成变态蝌蚪均重显著高于F1组,且F3组未完成变态牛蛙蝌蚪均重显著高于F4组(P<0.05),投喂频率对已完成变态牛蛙蝌蚪均重无显著性影响(P>0.05)。如表2所示,两个阶段牛蛙蝌蚪均重均随投喂水平的增高而显著上升(P<0.05)。
组别
group未完成变态均重
weight of unmetamorphosed tadpoles已完成变态均重
weight of frogletsF1 3.07±0.08a 2.78±0.09 F2 3.50±0.07bc 2.82±0.07 F3 3.67±0.05c 2.94±0.05 F4 3.35±0.07b 2.87±0.09 注:未完成变态均重是指除已完全缩尾蝌蚪剩余全部蝌蚪总均重,已完成变态均重是指全部已完全缩尾蝌蚪总均重。同一列不同小写字母表示显著差异(P<0.05),下同。
Notes: the mean weight of unmetamorphosis refers to the total mean weight of all tadpoles except the tadpoles of complete metamorphosis, while the mean weight of tadpoles of complete metamorphosis refers to the total mean weight of all tadpoles with no tails. In the same row, values with different lowercase superscripts mean significant difference (P<0.05), the same below.组别
group未完成变态均重
weight of unmetamorphosed tadpoles已完成变态均重
weight of frogletsP4 2.67±0.04a 2.00±0.04a P6 3.73±0.09b 2.98±0.11b P8 4.52±0.03c 3.61±0.11c P10 4.82±0.11d 4.35±0.18d 如表3所示,投喂频率对各组增重率及存活率均无显著影响(P>0.05),但变态投喂比随着每日投喂次数的增高呈上升趋势,F2、F3、F4组显著高于F1组(P<0.05)。如表4所示,投喂水平实验中P10组存活率显著高于其余各组(P<0.05);随着投喂水平的增加,饵料系数呈上升趋势,P8与P10组饵料系数显著高于P4与P6组(P<0.05);各组变态投喂比呈先上升后下降趋势,P6与P8组显著高于P4与P10组(P<0.05)。
组别
group增重率/%
WGR存活率/%
SR饵料系数/(g/g)
FCR变态投喂比/(只/kg)
MFRF1 5 811.27±167.78 75.00±3.06 1.31±0.03 181.19±5.66a F2 6 057.73±121.27 67.33±1.33 1.26±0.03 224.12±8.17b F3 6 226.00±84.58 70.67±2.67 1.22±0.02 237.42±2.37b F4 5 968.37±117.06 70.67±1.33 1.28±0.03 247.90±10.10b 组别
group增重率/%
WGR存活率/%
SR饵料系数/(g/g)
FCR变态投喂比/(只/kg)
MFRP4 4 729.93±25.99a 61.33±0.65a 1.19±0.01a 176.30±6.07a P6 6 404.03±110.53b 63.33±0.87a 1.26±0.02a 217.20±2.82c P8 7 522.77±173.55c 63.33±1.18a 1.40±0.03b 223.53±2.26c P10 8 872.70±293.86d 69.83±1.09b 1.46±0.05b 195.90±4.96b 2.3 投喂频率与投喂水平对已完成变态牛蛙蝌蚪肝组织形态的影响
由图版Ⅰ可知,本实验条件下,投喂频率对已完成变态牛蛙蝌蚪肝脏组织肝细胞排列、肝细胞间肝血窦分布及肝细胞内脂肪滴含量均无显著影响。
由图版Ⅱ可知,随着投喂水平升高至P8与P10组时,肝脏的中央静脉周围肝细胞脂滴含量增多,空泡化明显。
2.4 投喂频率与投喂水平对已完成变态牛蛙蝌蚪肝、肠消化及免疫酶活性的影响
投喂频率对已完成变态牛蛙蝌蚪的肠道消化酶活性无显著影响(P>0.05);随着投喂水平升高,胰蛋白酶活性呈下降趋势,P10组显著低于P4组(P<0.05)(表5,表6)。
项目
itemsF1 F2 F3 F4 胰蛋白酶/(U/mg) PR 46.03±0.98 48.50±0.91 47.93±1.56 46.51±0.25 脂肪酶/(U/g) LPS 76.28±1.46 76.67±2.32 76.09±1.06 72.67±1.06 淀粉酶/(U/mg) AMS 0.10±0.01 0.10±0.01 0.09±0.01 0.08±0.00 碱性磷酸酶/(U/g prot×102) AKP 105.84±1.18 99.37±6.02 104.18±11.15 94.22±3.83 酸性磷酸酶/(U/g prot×102) ACP 101.27±1.28 98.07±3.22 98.02±1.35 100.12±0.10 谷胱甘肽/(μmol/g prot) GSH 34.94±2.20 29.98±2.94 32.28±1.01 27.59±3.66 项目
itemsP4 P6 P8 P10 胰蛋白酶/(U/mg) PR 40.22±2.62b 36.88±3.54ab 30.57±3.86ab 27.01±3.41a 脂肪酶/(U/g) LPS 55.07±2.40 61.68±2.23 60.89±1.19 57.89±2.00 淀粉酶/(U/mg) AMS 0.06±0.00 0.08±0.01 0.08±0.00 0.07±0.00 碱性磷酸酶/(U/g prot×102) AKP 52.37±7.40a 45.81±13.51a 70.23±4.05a 111.33±12.08b 酸性磷酸酶/(U/g prot×102) ACP 102.53±1.94a 129.33±6.84b 130.36±9.48b 132.70±2.57b 谷胱甘肽/(μmol/g prot) GSH 27.31±1.60 29.79±3.30 28.41±1.56 28.74±0.99 注:同一行不同小写字母表示显著差异(P<0.05),下同。
Notes: in the same row, values with different lowercase superscripts mean significant difference (P<0.05), the same below.投喂频率对已变态牛蛙蝌蚪的肠道碱性磷酸酶、酸性磷酸酶及肝脏谷胱甘肽活性无显著性影响(P>0.05)。投喂水平实验中,已完成变态牛蛙蝌蚪的肠道碱性磷酸酶在P10组活性最高(P<0.05);P6、P8、P10组肠道酸性磷酸酶活性差异不显著(P>0.05),但均显著高于P4组(P<0.05)。
2.5 投喂水平对牛蛙蝌蚪肠道菌群结构的影响
P8与P10组Chao1、Observed_species、Shannon与Simpson指数均显著高于P4组(P<0.05)(表7)。
项目
itemsP4 P6 P8 P10 Chao1指数 Chao1 1 319.56±35.74a 1 382.15±51.52a 1 689.98±74.39b 1 810.36±44.82b 多样性指数 Faith_pd 65.27±3.28a 69.21±7.85a 117.22±25.22b 96.24±8.72ab 覆盖率指数 Goods_coverage 0.99±0.00b 0.99±0.00b 0.99±0.00a 0.99±0.00a 菌种丰富度指数 Observed_species 1 032.13±18.68a 1 106.63±43.87a 1 418.17±68.89b 1 559.30±43.6b 均匀度指数 Pielou_e 0.57±0.00a 0.57±0.01a 0.65±0.02b 0.70±0.01c 香农指数 Shannon 5.70±0.02a 5.79±0.16a 6.81±0.25b 7.39±0.09c 辛普森指数 Simpson 0.89±0.00a 0.88±0.01a 0.94±0.01b 0.98±0.00c 门水平上,牛蛙蝌蚪肠道菌群排列前3优势门类为解糖微小寄生菌(Saccharibacteria,TM7)、放线菌门(Actinobacteria)及变形菌门(Proteobacteria),共占总量60%以上(图3)。TM7菌门相对丰度总体随着投喂水平的升高呈下降趋势,P6组最高,至P10组相对丰度最低。放线菌门相对丰度在P10与P4组中相对丰度较大,而P6组相对丰度最低;各组变形菌门丰度差异不大。在属水平上,肠道优势细菌有暖绳菌属(Caldilinea)、分枝杆菌属(Mycobacterium)、艾克曼菌属(Akkermansia)和鲸杆菌属(Cetobacterium)。随着投喂水平的升高,暖绳菌属相对丰度增加,在P10组中达到最大值;P6组分枝杆菌属相对丰度低于其他3组;P6、P8与P10组艾克曼菌属相对丰度无较大差异,但均低于P4组。
3. 讨论
3.1 投喂频率对牛蛙蝌蚪变态发育及变态后肝肠健康的影响
牛蛙蝌蚪变态率是蛙类养殖生产中的重要评价指标。在本实验中,每日投喂3次的牛蛙蝌蚪获得了最高的增重率与变态率。有研究表明,较低或较高的投喂频率都会对牛蛙蝌蚪产生不利的影响[8]。在本实验中,较低的投喂频率(1 次/d或2 次/d)导致单次投入的食物过多,牛蛙蝌蚪无法及时全部摄食,从而导致较差的生长性能与变态率。而较高的投喂频率致使投喂间隔缩短,诱导牛蛙蝌蚪消化道内容物更快速移动,食物未完全消化便排出体外,从而导致较低的饵料利用率与增重率[9]。但高投喂频率组各阶段牛蛙蝌蚪总增重率与变态率未显著下降,仅出现下降趋势,这可能是因为本实验中最高投喂频率尚在牛蛙蝌蚪可接受的范围内,若继续增加投喂频率,则其生长性能下降趋势可能更明显。此外,每日较多的投喂次数能使网箱内个体获取食物的机会更加平等[10],减小了少部分抢食的牛蛙蝌蚪吃过量食物而导致饲料消化吸收率低的机会,缩小了发育差异,这可能也是本实验中高投喂频率组获得了高变态率及更均衡的阶段变态体重的原因。在某种程度上,变态投喂比可以反映投喂策略对养殖成本及效益的影响,变态投喂比越高则养殖效益越好,在本实验中投喂频率越高,牛蛙蝌蚪养殖越经济划算。
投喂频率对已完成变态牛蛙蝌蚪肠道消化酶活性也产生了一定的影响。本实验结果与Jirapan等[11]在大鳍暗礁乌贼(Sepioteuthis lessoniana)中的研究相似,3种消化酶活性随投喂频率的升高呈现了不显著的下降趋势,原因可能是投喂频率较低时,牛蛙蝌蚪相对摄食较少,因此机体通过提高消化酶活性来提高食物吸收利用率,而投喂频率较高时,牛蛙蝌蚪只需维持正常的消化酶水平即可满足营养需求。
3.2 投喂水平对牛蛙蝌蚪变态发育及变态后肝肠健康的影响
与已有的研究类似[12],投喂水平对牛蛙蝌蚪的影响明显大于投喂频率。投喂量过少会导致养殖对象生长发育速度较慢,而投喂量过多会降低饵料效率,增加养殖成本[13]。在厚颌鲂(Megalobrama pellegrini)[14]、黄鳝(Monopterus albus)[15]、多纹钱蝶鱼(Selenotoca multifasciata)[16]的研究中发现,在适宜范围内投喂水平升高能够促进生长发育。在本实验中,随着投喂率的增加,牛蛙蝌蚪的总体增重率与变态率呈上升趋势,在P10组达到最高,这可能是由于较高的投喂水平使牛蛙蝌蚪变态前积累了大量营养物质,并获得了更高的生长速度,这使得高投喂组中牛蛙蝌蚪体重显著高于低投喂组。值得注意的是,8%的投喂水平变态投喂比最高,经济效益最好,而4%与10%的投喂水平会导致牛蛙蝌蚪养殖效益降低,这是因为过低的投喂量使牛蛙蝌蚪发育缓慢,而过高的投喂量也导致饲料浪费,增高饵料系数,均不利于牛蛙蝌蚪养殖。本实验中牛蛙蝌蚪的变态发育没有被最高投饵率所限制,或许其变态率可以通过进一步增加投喂水平提升,但是当投喂水平超过8%时,饵料效率已经开始有下降趋势。此外,投喂水平最高组的成活率显著高于其他3组,这可能是因为充足的营养保障使牛蛙蝌蚪免疫系统得到了更好的发育[17],刘伟等[18]也研究发现较高的投饵率提高了吉富罗非鱼(Oreachromis niloticus, GIFT)幼鱼成活率。
进一步对肝脏组织进行切片观察发现,随着投喂水平的增加,完成变态后的牛蛙蝌蚪肝脏脂滴含量有增加的趋势。这可能是由于牛蛙蝌蚪摄入食物过多,使较多的营养物质储存在肝脏中导致的。投喂量的降低使肠道蛋白酶活性呈上升趋势,这可能是因为牛蛙蝌蚪能通过提高蛋白酶的活性来应对低投喂水平的蛋白质不足[19]。刘淑兰等[20]指出食物的短缺能够促使动物机体通过提高肠道消化酶活性来调整自身生理状态,因此在投喂严重不足时饲料的消化率反而提高,这种现象是动物体的一种适应机制,投喂率的变化对养殖对象消化能力的影响可以从中体现[21]。而当投喂水平增高时,牛蛙蝌蚪只需分泌更少的消化酶,将饵料进行不充分的消化便可以获取满足生长的营养,这可能是高投饵率组消化酶降低的原因,也因此导致高投饵率组较高的饵料系数。随着投喂水平的升高,脂肪酶活性呈现先上升后下降趋势,表明适宜的投喂水平能够改善机体对脂肪的利用。这两种消化酶的趋势均与赵志刚等[19]在施氏鲟(Acipenser schrenckii)幼鱼上的研究一致。不同投喂水平对淀粉酶差异均不显著,可能是由于水产动物对糖类利用较低导致的[22]。
随着投喂水平升高,变态后牛蛙蝌蚪肠道AKP、ACP活性有上升的趋势,表明牛蛙蝌蚪的非特异性免疫力增强,这也反映在牛蛙蝌蚪逐渐升高的存活率中。本结果与王艺超等[23]在刺参(Apostichopus japonicus)中的研究相似,但是与刘伟等[24]在罗非鱼中研究有所差异,其发现高投喂水平可提高生长速度,但是会降低鱼体对病菌的抵抗力,这可能是由于养殖品种及阶段不同导致的,本实验中牛蛙蝌蚪处于牛蛙幼体期,营养需求量较大,最高投喂率组尚处于牛蛙蝌蚪消化系统可以承受范围内,不仅不会对牛蛙蝌蚪免疫系统造成明显损伤,还会给予机体足够的发育所需能量。相反,投喂率过低会减少牛蛙蝌蚪饲料摄入量,使其缺乏足够的营养物质,不利于机体发育,降低免疫能力,导致成活率较低[25]。
肠道菌群在维持肠道健康、抵抗病原入侵和调节机体能量吸收等方面发挥重要作用[26-27]。解糖微小寄生菌(TM7)、放线菌门、变形菌门、绿弯菌门(Chloroflexi)、疣微菌门(Verrucomicorbia)和梭杆菌门(Fusobacteriota)是牛蛙蝌蚪肠道中的主要菌门。TM7菌门是消化道微生物组的重要组成部分,其不能独立存在,一般寄生于放线菌门[28],其丰度与多种疾病密切相关,但是具体的致病机制尚不明确[29];放线菌门的次级代谢产物是抗生素的重要来源,其丰度的提高可增加肠道内抗生素的产量,进而破坏肠道菌群的稳态,加剧相关疾病的进展[30]。随着投喂水平的增加,这两种菌门的合计相对丰度呈下降趋势,这可能是高投喂水平组获得较高的生长发育速度与成活率的原因[31]。在属水平上,前10种丰度较高的菌属相对丰度仅为20%~40%,表明牛蛙蝌蚪肠道内菌属种类较多,结构复杂。相对丰度排列前4的菌属分别为暖绳菌属(绿弯菌门)、分枝杆菌属(放线菌门)、艾克曼菌属(微疣菌门)、鲸杆菌属(梭杆菌门),这几个菌属分别是导致其对应门类相对丰度变化的主要菌属。暖绳菌属在降解氮含量有很好的效果,本实验中牛蛙蝌蚪体内该菌属相对丰度随着投喂水平呈阶梯式增长,可能因此导致了更好的生长性能。鲸杆菌属能提高牛蛙氨基酸转运和代谢率[32],在本实验中投喂水平为8%时,该菌属相对丰度最高,这可能是8%组牛蛙蝌蚪饵料效率较高的原因。
4. 结论
在本实验条件下,每日投喂1~4次不会显著影响蝌蚪的生长性能及肝肠健康,但适当的高投喂频率(每日投喂3~4次)能够促进蝌蚪变态发育,提高蝌蚪终末变态率。8%与10%的投喂水平不仅改善了牛蛙蝌蚪的生长性能与终末变态率,还维护了完成变态蝌蚪的肝肠健康。综合考虑养殖管理及饲料成本,建议牛蛙蝌蚪养殖每日投喂3次,投喂水平为8%左右。
-
图 1 投喂频率(a)与投喂水平(b)对牛蛙蝌蚪变态率的影响。
F1、F2、F3和F4分别表示蝌蚪每日投喂1次(12:00)、2次(6:00和18:00)、3次(6:00、12:00和18:00)和4次(6:00、10:00、14:00和18:00);P4、P6、P8和P10表示蝌蚪日投喂水平分别为体重的4%、6%、8%和10%;不同小写字母表示差异显著(P<0.05),下同。
Figure 1. Effects of feeding frequency (a) and feeding level (b) on metamorphosis rate of tadpoles
F1, F2, F3 and F4 mean that tadpoles are fed once a day (12:00), twice a day (6:00 and 18:00), three times a day (6:00, 12:00 and 18:00) and four times a day (6:00, 10:00, 14:00 and 18:00), respectively. P4, P6, P8 and P10 indicated that the daily feeding levels of tadpoles were 4%, 6%, 8% and 10% of body weight, respectively. In the same row, values with different lowercase superscripts mean significant difference (P<0.05), The same below.
图 2 投喂频率(a)与投喂水平(b)对不同时期已完成变态牛蛙蝌蚪均重的影响
横坐标1、2、3分别表示变态采样第1周(第45-51天)、变态采样第2周(第52-58天)、变态采样第3周(第59-65天)。由于P4组在采样第一周无蝌蚪完成变态(non-metamorphosis,NM),因此采用独立T检验统计了该组第2周和第3周变态后的平均体重差异。P4组不参与采样第一周不同处理组牛蛙蝌蚪变态均重比较。*表示同一处理组不同时期差异显著(P<0.05)。
Figure 2. Effects of feeding frequency (a) and feeding level (b) on average body weight of tadpoles of complete metamorphosis at three weeks
The horizontal coordinates 1, 2 and 3 represent the first week of metamorphosis sampling (day 45-51), the second week of metamorphosis sampling (day 52-58), and the third week of metamorphosis sampling (day 59-65), respectively. Since there was no non-metamorphosis (NM) in group P4 during the first week of sampling, the difference in mean body weight between the second and third weeks of metamorphosis was calculated by t-test. Group P4 did not participate in the comparison of metamorphosis mean weight of L. catesbeiana tadpoles among different treatment groups in the first week of sampling. The average weight difference of tadpoles of complete metamorphosis in different periods of the same treatment group is represented by *.
图版Ⅰ 投喂频率对已完成变态牛蛙蝌蚪肝组织形态的影响(H.E染色)
1. F1组肝脏切片 100×;2. F2组肝脏切片 100×;3. F3组肝脏切片 100×;4. F4组肝脏切片 100×;5. F1组肝脏切片 400×;6. F2组肝脏切片 400×;7. F3组肝脏切片 400×;8. F4组肝脏切片 400×;a.中央静脉,b.肝细胞。
图版Ⅰ. Effects of feeding frequency on liver morphology of tadpoles of complete metamorphosis (H.E)
1. Liver section of F1 group 100X; 2. Liver section of F2 group 100X; 3. Liver Section of F3 group 100X; 4. Liver section of F4 group 100X; 5. Liver section of F1 group 400X; 6. Liver section of F2 group 400X; 7. Liver section of F3 group 400X; 8. Liver section of F4 group 400X; a. central veins (The veins in the center of the hepatic lobule are surrounded by radial liver cells, which are important vessels for the exchange of substances between the liver and other organs); b. hepatocyte.
图版Ⅱ 投喂水平对已完成变态牛蛙蝌蚪肝组织形态的影响(H.E染色)
1. P4组肝脏切片 100×;2. P6组肝脏切片 100×;3. P8组肝脏切片 100×;4. P10组肝脏切片 100×;5. P4组肝脏切片 400×;6. P6组肝脏切片 400×;7. P8组肝脏切片 400×;8. P10组肝脏切片 400×;a.中央静脉,b.肝细胞。
图版Ⅱ. Effects of feeding level on liver morphology of tadpoles of complete metamorphosis (H.E)
1. Liver section of P4 group 100X; 2. Liver section of P6 group 100X; 3. Liver Section of P8 group 100X; 4. Liver section of P10 group 100X; 5. Liver section of P4 group 400X; 6. Liver section of P6 group 400X; 7. Liver section of P8 group 400X; 8. Liver section of P10 group 400X; a. central veins (The veins in the center of the hepatic lobule are surrounded by radial liver cells, which are important vessels for the exchange of substances between the liver and other organs); b. hepatocyte
表 1 投喂频率对牛蛙蝌蚪均重的影响
Table 1 Effects of feeding frequency on average body weight of tadpoles g
组别
group未完成变态均重
weight of unmetamorphosed tadpoles已完成变态均重
weight of frogletsF1 3.07±0.08a 2.78±0.09 F2 3.50±0.07bc 2.82±0.07 F3 3.67±0.05c 2.94±0.05 F4 3.35±0.07b 2.87±0.09 注:未完成变态均重是指除已完全缩尾蝌蚪剩余全部蝌蚪总均重,已完成变态均重是指全部已完全缩尾蝌蚪总均重。同一列不同小写字母表示显著差异(P<0.05),下同。
Notes: the mean weight of unmetamorphosis refers to the total mean weight of all tadpoles except the tadpoles of complete metamorphosis, while the mean weight of tadpoles of complete metamorphosis refers to the total mean weight of all tadpoles with no tails. In the same row, values with different lowercase superscripts mean significant difference (P<0.05), the same below.表 2 投喂水平对牛蛙蝌蚪均重的影响
Table 2 Effects of feeding level on average body weight of tadpoles g
组别
group未完成变态均重
weight of unmetamorphosed tadpoles已完成变态均重
weight of frogletsP4 2.67±0.04a 2.00±0.04a P6 3.73±0.09b 2.98±0.11b P8 4.52±0.03c 3.61±0.11c P10 4.82±0.11d 4.35±0.18d 表 3 投喂频率对牛蛙蝌蚪生长性能的影响
Table 3 Effects of feeding frequency on growth performance of tadpoles
组别
group增重率/%
WGR存活率/%
SR饵料系数/(g/g)
FCR变态投喂比/(只/kg)
MFRF1 5 811.27±167.78 75.00±3.06 1.31±0.03 181.19±5.66a F2 6 057.73±121.27 67.33±1.33 1.26±0.03 224.12±8.17b F3 6 226.00±84.58 70.67±2.67 1.22±0.02 237.42±2.37b F4 5 968.37±117.06 70.67±1.33 1.28±0.03 247.90±10.10b 表 4 投喂水平对牛蛙蝌蚪生长性能的影响
Table 4 Effects of feeding level on growth performance of tadpoles
组别
group增重率/%
WGR存活率/%
SR饵料系数/(g/g)
FCR变态投喂比/(只/kg)
MFRP4 4 729.93±25.99a 61.33±0.65a 1.19±0.01a 176.30±6.07a P6 6 404.03±110.53b 63.33±0.87a 1.26±0.02a 217.20±2.82c P8 7 522.77±173.55c 63.33±1.18a 1.40±0.03b 223.53±2.26c P10 8 872.70±293.86d 69.83±1.09b 1.46±0.05b 195.90±4.96b 表 5 投喂频率对已完成变态牛蛙蝌蚪肝、肠消化及免疫酶活性的影响
Table 5 Effects of feeding frequency on liver and intestinal digestion and immunoenzyme activities of tadpoles of complete metamorphosis
项目
itemsF1 F2 F3 F4 胰蛋白酶/(U/mg) PR 46.03±0.98 48.50±0.91 47.93±1.56 46.51±0.25 脂肪酶/(U/g) LPS 76.28±1.46 76.67±2.32 76.09±1.06 72.67±1.06 淀粉酶/(U/mg) AMS 0.10±0.01 0.10±0.01 0.09±0.01 0.08±0.00 碱性磷酸酶/(U/g prot×102) AKP 105.84±1.18 99.37±6.02 104.18±11.15 94.22±3.83 酸性磷酸酶/(U/g prot×102) ACP 101.27±1.28 98.07±3.22 98.02±1.35 100.12±0.10 谷胱甘肽/(μmol/g prot) GSH 34.94±2.20 29.98±2.94 32.28±1.01 27.59±3.66 表 6 投喂水平对已完成变态的牛蛙蝌蚪肝、肠消化及免疫酶活性的影响
Table 6 Effects of feeding level on liver and intestinal digestion and immunoenzyme activities of tadpoles of complete metamorphosis
项目
itemsP4 P6 P8 P10 胰蛋白酶/(U/mg) PR 40.22±2.62b 36.88±3.54ab 30.57±3.86ab 27.01±3.41a 脂肪酶/(U/g) LPS 55.07±2.40 61.68±2.23 60.89±1.19 57.89±2.00 淀粉酶/(U/mg) AMS 0.06±0.00 0.08±0.01 0.08±0.00 0.07±0.00 碱性磷酸酶/(U/g prot×102) AKP 52.37±7.40a 45.81±13.51a 70.23±4.05a 111.33±12.08b 酸性磷酸酶/(U/g prot×102) ACP 102.53±1.94a 129.33±6.84b 130.36±9.48b 132.70±2.57b 谷胱甘肽/(μmol/g prot) GSH 27.31±1.60 29.79±3.30 28.41±1.56 28.74±0.99 注:同一行不同小写字母表示显著差异(P<0.05),下同。
Notes: in the same row, values with different lowercase superscripts mean significant difference (P<0.05), the same below.表 7 投喂水平对牛蛙蝌蚪肠道菌群多样性的影响
Table 7 Influence of feeding level on intestinal microflora diversity of tadpoles
项目
itemsP4 P6 P8 P10 Chao1指数 Chao1 1 319.56±35.74a 1 382.15±51.52a 1 689.98±74.39b 1 810.36±44.82b 多样性指数 Faith_pd 65.27±3.28a 69.21±7.85a 117.22±25.22b 96.24±8.72ab 覆盖率指数 Goods_coverage 0.99±0.00b 0.99±0.00b 0.99±0.00a 0.99±0.00a 菌种丰富度指数 Observed_species 1 032.13±18.68a 1 106.63±43.87a 1 418.17±68.89b 1 559.30±43.6b 均匀度指数 Pielou_e 0.57±0.00a 0.57±0.01a 0.65±0.02b 0.70±0.01c 香农指数 Shannon 5.70±0.02a 5.79±0.16a 6.81±0.25b 7.39±0.09c 辛普森指数 Simpson 0.89±0.00a 0.88±0.01a 0.94±0.01b 0.98±0.00c -
[1] Xu W J, Xu Y, Su H C, et al. Effects of feeding frequency on growth, feed utilization, digestive enzyme activity and body composition of Litopenaeus vannamei in biofloc-based zero-exchange intensive systems[J]. Aquaculture, 2020, 522: 735079. doi: 10.1016/j.aquaculture.2020.735079
[2] da Silva E C, Sterzelecki F C, Musialak L A, et al. Effect of feeding frequency on growth performance, blood metabolites, proximate composition and digestive enzymes of Lebranche mullet (Mugil liza) Juveniles[J]. Aquaculture Research, 2020, 51(3): 1162-1169. doi: 10.1111/are.14466
[3] Hu Y C, Xiao K, Yang J, et al. Effects of feeding frequency on juvenile Chinese sturgeon Acipenser sinensis[J]. Scientific Reports, 2020, 10(1): 17399. doi: 10.1038/s41598-020-74120-x
[4] 刘姚. 泥鳅投喂策略研究[D]. 杨凌: 西北农林科技大学, 2011. Liu Y. Study on feeding strategy of loach[D]. Yangling: Northwest A&F University, 2011 (in Chinese).
[5] Cadorin D I, da Silva M F O, Masagounder K, et al. Interaction of feeding frequency and feeding rate on growth, nutrient utilization, and plasma metabolites of juvenile genetically improved farmed Nile tilapia, Oreochromis niloticus[J]. Journal of the World Aquaculture Society, 2022, 53(2): 500-515. doi: 10.1111/jwas.12833
[6] 李会峰, 李二超, 徐畅, 等. 饲料中添加水飞蓟素对低盐度下凡纳滨对虾生长、免疫、肝胰腺组织结构及肠道菌群的影响[J]. 水产学报, 2021, 45(1): 98-114. Li H F, Li E C, Xu C, et al. Effects of silymarin on growth, activities of immune-related enzymes, hepatopancreas histology and intestinal microbiota of the Pacific white shrimp (Litopenaeus vannamei) at low salinity[J]. Journal of Fisheries of China, 2021, 45(1): 98-114 (in Chinese).
[7] 周楠楠, 丁斐斐, 张乐, 等. 饲料中添加脱氧胆酸钠对大口黑鲈生长、糖代谢及肠道菌群的影响[J]. 水产学报, 2021, 45(10): 1740-1752. Zhou N N, Ding F F, Zhang L, et al. Effects of dietary sodium deoxycholate on the growth, glucose metabolism and intestinal microbiota of largemouth bass (Micropterus salmoides)[J]. Journal of Fisheries of China, 2021, 45(10): 1740-1752 (in Chinese).
[8] 陈春娜, 李正一, 龙治海, 等. 投喂频率及投喂时间对长薄鳅仔稚鱼生长性能的影响[J]. 江西农业学报, 2020, 32(1): 91-96. Chen C N, Li Z Y, Long Z H, et al. Effects of feeding frequency and time on growth of larvae and juvenile of Leptobotia elongata[J]. Acta Agriculturae Jiangxi, 2020, 32(1): 91-96 (in Chinese).
[9] 谢苏明. 池塘工程化循环水模式下投喂频率对大口黑鲈生长、免疫与消化性能的影响[D]. 上海: 上海海洋大学, 2020. Xie S M. Effects of feeding frequency on the growth, immune and digestion performance of largemouth bass reared in in-pond raceway culture systems[D]. Shanghai: Shanghai Ocean University, 2020 (in Chinese).
[10] 邓乾龙, 王文, 董双林, 等. 大西洋鲑幼鱼适宜投喂频率和胃排空研究[J]. 中国海洋大学学报, 2022, 52(3): 52-60. Deng Q L, Wang W, Dong S L, et al. Studies on feeding frequency and gastric evacuation of juvenile Atlantic salmon (Salmo salar)[J]. Periodical of Ocean University of China, 2022, 52(3): 52-60 (in Chinese).
[11] Satjarak J, Thongprajukaew K, Kaewtapee C, et al. Optimal feeding frequency for bigfin reef squid (Sepioteuthis lessoniana)[J]. Aquaculture Research, 2021, 52(6): 2740-2750. doi: 10.1111/are.15126
[12] 卫育良, 王建学, 徐后国, 等. 红鳍东方鲀幼鱼适宜投喂频率和投喂水平的研究[J]. 动物营养学报, 2021, 33(3): 1755-1765. Wei Y L, Wang J X, Xu H G, et al. Study on optimum feeding frequency and feeding level of juvenile Takifugu rubripes[J]. Chinese Journal of Animal Nutrition, 2021, 33(3): 1755-1765 (in Chinese).
[13] 褚志鹏, 金佳利, 陈细华, 等. 不同投喂率和投喂频率对大杂交鲟幼鱼生长、体成分和生化指标的影响[J]. 中国水产科学, 2020, 27(2): 177-185. Chu Z P, Jin J L, Chen X H, et al. Effects of different feeding rates and frequencies on the growth performance, body composition, and biochemical parameters of juvenile hybrid sturgeon[J]. Journal of Fishery Sciences of China, 2020, 27(2): 177-185 (in Chinese).
[14] 曲焕韬, 陈磊, 廖建新, 等. 投喂策略对厚颌鲂幼鱼的生长、肠道消化酶活性和形态学的影响[J]. 海南大学学报自然科学版, 2021, 39(1): 29-35. Qu H T, Chen L, Liao J X, et al. Effects of feeding strategies on growth, intestine digestive enzymes activities and intestine morphology of Megalobrama pellegrini[J]. Natural Science Journal of Hainan University, 2021, 39(1): 29-35 (in Chinese).
[15] 陈云飞, 彭慧珍, 刘庄鹏, 等. 投喂水平对黄鳝(Monopterus albus)生长、肠道消化酶活性及部分血清生理生化指标的影响[J]. 渔业科学进展, 2017, 38(2): 114-120. Chen Y F, Peng H Z, Liu Z P, et al. Effects of feeding level on growth, intestinal digestive enzymes activity and physiological and biochemical characteristics of serum in the Asian swamp eel (Monopterus albus)[J]. Progress in Fishery Sciences, 2017, 38(2): 114-120 (in Chinese).
[16] 李琪, 刘鉴毅, 孙艳秋, 等. 投喂策略对多纹钱蝶鱼幼鱼生长的影响[J]. 海洋科学, 2022, 46(3): 93-102. Li Q, Liu J Y, Sun Y Q, et al. Effects of feeding strategies on the growth of Selenotoca multifasciata[J]. Marine Sciences, 2022, 46(3): 93-102 (in Chinese).
[17] Li X F, Xu C, Tian H Y, et al. Feeding rates affect stress and non-specific immune responses of juvenile blunt snout bream Megalobrama amblycephala subjected to hypoxia[J]. Fish & Shellfish Immunology, 2016, 49: 298-305.
[18] 刘伟, 文华, 蒋明, 等. 投喂率和投喂频率对吉富罗非鱼幼鱼生长和肝脏健康的影响[J]. 淡水渔业, 2019, 49(2): 84-93. doi: 10.3969/j.issn.1000-6907.2019.02.015 Liu W, Wen H, Jiang M, et al. Effects of feeding rate and feeding frequency on growth performance and liver health for juvenile generically improved farmed tiplapid, Oreochromis niloticus[J]. Freshwater Fisheries, 2019, 49(2): 84-93 (in Chinese). doi: 10.3969/j.issn.1000-6907.2019.02.015
[19] 赵志刚, 李晋南, 徐奇友, 等. 变温条件下不同投喂水平对施氏鲟幼鱼消化酶、代谢酶和抗氧化酶活性的影响[J]. 动物营养学报, 2017, 29(1): 127-133. Zhao Z G, Li J N, Xu Q Y, et al. Effects of different ration levels in temperature fluctuation on digestive enzyme, metabolic enzyme and antioxidase activities of juvenile Amur sturgeon (Acipenser schrenckii Brandt)[J]. Chinese Journal of Animal Nutrition, 2017, 29(1): 127-133 (in Chinese).
[20] 刘淑兰, 孙国祥, 李杰, 等. 投喂频率对大西洋鲑生长和生理指标的影响[J]. 水产科学, 2019, 38(3): 341-346. Liu S L, Sun G X, Li J, et al. Effects of feeding frequency on growth and some physiological indices in Atlantic salmon Salmo salar[J]. Fisheries Science, 2019, 38(3): 341-346 (in Chinese).
[21] 薛明, 柯才焕, 王德祥, 等. 饥饿与再投喂对方斑东风螺生长、基本营养成分及RNA/DNA比值的影响[J]. 水产学报, 2010, 34(3): 481-488. doi: 10.3724/SP.J.1231.2010.06558 Xue M, Ke C H, Wang D X, et al. Effects of starvation and recovery on growth, proximate composition and RNA/DNA ratio in juvenile spotted ivory shell (Babylonia areolata)[J]. Journal of Fisheries of China, 2010, 34(3): 481-488 (in Chinese). doi: 10.3724/SP.J.1231.2010.06558
[22] 任鸣春. 军曹鱼和虹鳟糖类营养生理研究[D]. 青岛: 中国海洋大学, 2012. Ren M C. Studies on nutritional physiology of carbohydrate for cobia and rainbow trout[D]. Qingdao: Ocean University of China, 2012 (in Chinese).
[23] 王艺超, 梁萌青, 郑珂珂. 不同投喂水平对刺参(Apostichopus japonicus Selenka)生长、消化酶及免疫相关酶活性的影响[J]. 渔业科学进展, 2016, 37(1): 87-92. doi: 10.11758/yykxjz.20150211003 Wang Y C, Liang M Q, Zheng K K. Effects of different ration levels on growth, activities of digestive enzymes and immunity-related enzymes in Apostichopus japonicus Selenka[J]. Progress in Fishery Sciences, 2016, 37(1): 87-92 (in Chinese). doi: 10.11758/yykxjz.20150211003
[24] 刘伟, 蒋明, 吴凡, 等. 饲料能量密度和投喂水平对吉富罗非鱼生长和健康的影响[J]. 水生生物学报, 2022, 46(1): 58-68. Liu W, Jiang M, Wu F, et al. Effects of dietary energy density and feed ration on growth and health in genetically improved farmed tilapia, Oreochromis niloticus[J]. Acta Hydrobiologica Sinica, 2022, 46(1): 58-68 (in Chinese).
[25] 种金豆, 李琪, 王涛. 培育密度和投饵量对长牡蛎壳黑选育品系幼虫生长存活及附着变态的影响[J]. 中国海洋大学学报, 2019, 49(2): 21-29. Chong J D, Li Q, Wang T. Effects of stocking density and algal ration on growth, survival and settlement of pacific oyster (Crassostrea gigas) black shell line larvae[J]. Periodical of Ocean University of China, 2019, 49(2): 21-29 (in Chinese).
[26] 高权新, 吴天星, 王进波. 肠道微生物与寄主的共生关系研究进展[J]. 动物营养学报, 2010, 22(3): 519-526. doi: 10.3969/j.issn.1006-267x.2010.03.002 Gao Q X, Wu T X, Wang J B. Advance in research on symbiotic relationship between intestinal bacterial and their host[J]. Chinese Journal of Animal Nutrition, 2010, 22(3): 519-526 (in Chinese). doi: 10.3969/j.issn.1006-267x.2010.03.002
[27] 孟晓林, 李文均, 聂国兴. 鱼类肠道菌群影响因子研究进展[J]. 水产学报, 2019, 43(1): 143-155. Meng X L, Li W J, Nie G X. Effect of different factors on the fish intestinal microbiota[J]. Journal of Fisheries of China, 2019, 43(1): 143-155 (in Chinese).
[28] Bor B, Collins A J, Murugkar P P, et al. Insights obtained by culturing Saccharibacteria with their bacterial hosts[J]. Journal of Dental Research, 2020, 99(6): 685-694. doi: 10.1177/0022034520905792
[29] 聂杰, 陈宇星, 姜淞, 等. 解糖微小寄生菌的研究进展[J]. 中国科学:生命科学, 2021, 51(11): 1523-1531. doi: 10.1360/SSV-2020-0400 Nie J, Chen Y X, Jiang S, et al. Research progress of Saccharibacteria: A review[J]. Scientia Sinica (Vitae), 2021, 51(11): 1523-1531 (in Chinese). doi: 10.1360/SSV-2020-0400
[30] Katsuyama Y. Mining novel biosynthetic machineries of secondary metabolites from actinobacteria[J]. Bioscience, Biotechnology, and Biochemistry, 2019, 83(9): 1606-1615. doi: 10.1080/09168451.2019.1606700
[31] 李英英, 陈曦, 宋铁英. 不同生长速度的大黄鱼肠道菌群结构的差异[J]. 大连海洋大学学报, 2017, 32(5): 509-513. doi: 10.16535/j.cnki.dlhyxb.2017.05.002 Li Y Y, Chen X, Song T Y. Differences in intestinal flora of cultured large yellow croaker Pseudosciaena crocea with different growth rates[J]. Journal of Dalian Ocean University, 2017, 32(5): 509-513 (in Chinese). doi: 10.16535/j.cnki.dlhyxb.2017.05.002
[32] Wang L, Wang J, Lu K L, et al. Total replacement of fish meal with soybean meal in diets for bullfrog (Lithobates catesbeianus): Effects on growth performance and gut microbial composition[J]. Aquaculture, 2020, 524: 735236. doi: 10.1016/j.aquaculture.2020.735236
-
期刊类型引用(3)
1. 王志龙,夏耘,谢骏,舒锐,王广军,郁二蒙,雷小婷,龚望宝. 两种养殖蛙类肌肉品质、肠道形态学及微生物构成比较分析. 南方水产科学. 2024(01): 173-183 . 百度学术 2. 向述辉,朱波,蔡明浪,邵闯,桂飞,刘庄鹏,胡毅,陈开健. 发酵饲料对牛蛙生长性能、肌肉营养成分及肠道菌群的影响. 动物营养学报. 2024(10): 6643-6655 . 百度学术 3. 杨旭红,黄凯,黄明磊,夏乐文,林向东,于凯,郭睿婕,黄娇. 饲料中添加复方中草药对美国牛蛙生长性能、血清生化指标和肠道组织形态的影响. 饲料工业. 2023(22): 104-112 . 百度学术 其他类型引用(0)