• ISSN 1000-0615
  • CN 31-1283/S
ZHU Ming, WU Yubo, REN Xing, HUANG Di, JIANG Danli, WANG Yan. The potential to replace dietary fish meal with corn gluten meal for golden pompano (Trachinotus ovatus)[J]. Journal of fisheries of china, 2017, 41(8): 1298-1307. DOI: 10.11964/jfc.20160910538
Citation: ZHU Ming, WU Yubo, REN Xing, HUANG Di, JIANG Danli, WANG Yan. The potential to replace dietary fish meal with corn gluten meal for golden pompano (Trachinotus ovatus)[J]. Journal of fisheries of china, 2017, 41(8): 1298-1307. DOI: 10.11964/jfc.20160910538

The potential to replace dietary fish meal with corn gluten meal for golden pompano (Trachinotus ovatus)

Funds: 

The Key Special Projects of Ningbo City(China) in Agriculture (2015C10003)

More Information
  • Corresponding author:

    WANG Yan. E-mail: ywang@zju.edu.cn

  • Received Date: September 11, 2016
  • Revised Date: February 23, 2017
  • Available Online: November 26, 2017
  • Published Date: July 31, 2017
  • An 8-week feeding trial was conducted to evaluate the potential of fish meal replacement with corn gluten meal (CGM) in diets for golden pompano (Trachinotus ovatus). A 2×3 layout was used. A basal diet (C) was formulated to contain 250 g/kg fish meal. In the test diets, 20, 40 and 60% of the fish meal in the basal diet was respectively replaced by either CGM (R) or γ-ray irradiated CGM (IR). The six test diets were abbreviated as R20, R40, R60, IR20, IR40 and IR60 (CGM was used as a fish meal substitute in diets R20, R40 and R60, and γ-ray irradiated CGM was used as a fish meal substitute in diets IR20, IR40 and IR60). All the diets were formulated at equal protein and lipid levels. Initial body weight of fish was (31.9±0.2) g. The results showed that weight gain, feed intake, feed conversion ratio (FCR), nitrogen retention efficiency (NRE), phosphorus retention efficiency (PRE) and body content of phosphorus were significantly affected by fish meal replacement level, while body phosphorus content was affected by the type of CGM used. Feed intake and weight gain decreased with increasing fish meal replacement level, regardless of CGM or γ-ray irradiated CGM as a fish meal substitute. At the same fish meal replacement level, no significant differences were found in the feed intake, weight gain, FCR, NRE, PRE, condition factor, hepatosomatic index and body composition (moisture, crude protein, crude lipid and ash) between fish fed the diets with fish meal replaced by CGM and γ-ray irradiated CGM. No significant differences were found in feed intake, weight gain, FCR and NRE between fish fed diets C and R20, suggesting that dietary fish meal level for T. ovatus can be reduced to 200 g/kg when CGM was used as a fish meal substitute. This study reveals that γ-ray irradiation could not improve CGM as a fish meal substitute in T. ovatus diet.
  • [1]
    FAO. FAO yearbook: fishery and aquaculture statistics[R]. Rome: Food and Agriculture Organization of the United Nations, 2014.
    [2]
    NRC. Nutrient Requirements of Fish and Shrimp[M]. Washington, DC: National Academy Press, 2011: 107-109.
    [3]
    Cho C Y, Bayley H S, Slinger S J. Partial replacement of herring meal with soybean meal and other changes in a diet for rainbow trout (Salmo gairdneri)[J]. Journal of the Fisheries Board of Canada, 1974, 31(9): 1523-1528. doi: 10.1139/f74-184
    [4]
    Hardy R W. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal[J]. Aquaculture Research, 2010, 41(5): 770-776. doi: 10.1111/are.2010.41.issue-5
    [5]
    Zhang Y Q, Wu Y B, Jiang D L, et al. Gamma-irradiated soybean meal replaced more fish meal in the diets of Japanese seabass (Lateolabrax japonicus)[J]. Animal Feed Science and Technology, 2014, 197: 155-163. doi: 10.1016/j.anifeedsci.2014.08.002
    [6]
    Wu Y B, Wang Y, Ren G, et al. Improvement of fish meal replacements by soybean meal and soy protein concentrate in golden pompano diet through γ-ray irradiation[J]. Aquaculture Nutrition, 2016, 22(4): 873-880. doi: 10.1111/anu.2016.22.issue-4
    [7]
    Gaber M H. Effect of γ-irradiation on the molecular properties of bovine serum albumin[J]. Journal of Bioscience and Bioengineering, 2005, 100(2): 203-206. doi: 10.1263/jbb.100.203
    [8]
    Farkas J. Irradiation for better foods[J]. Trends in Food Science & Technology, 2006, 17(4): 148-152.
    [9]
    Hertrampf J W, Piedad-Pascual F. Handbook on Ingredients for Aquaculture Feeds[M]. Dordrecht: Kluwer Academic Publishers, 2000: 573.
    [10]
    Robaina L, Moyano F J, Izquierdo M S, et al. Corn gluten and meat and bone meals as protein sources in diets for gilthead seabream (Sparus aurata): nutritional and histological implications[J]. Aquaculture, 1997, 157(3-4): 347-359. doi: 10.1016/S0044-8486(97)00174-9
    [11]
    Pereira T G, Oliva-Teles A. Evaluation of corn gluten meal as a protein source in diets for gilthead sea bream (Sparus aurata L.) juveniles[J]. Aquaculture Research, 2003, 34(13): 1111-1117. doi: 10.1046/j.1365-2109.2003.00909.x
    [12]
    Regost C, Arzel J, Kaushik S J. Partial or total replacement of fish meal by corn gluten meal in diet for turbot (Psetta maxima)[J]. Aquaculture, 1999, 180(1-2): 99-117. doi: 10.1016/S0044-8486(99)00026-5
    [13]
    Kikuchi K. Partial replacement of fish meal with corn gluten meal in diets for Japanese flounder Paralichthys olivaceus[J]. Journal of the World Aquaculture Society, 1999, 30(3): 357-363. doi: 10.1111/jwas.1999.30.issue-3
    [14]
    Güroy B, Şahin İ, Kayalı S, et al. Evaluation of feed utilization and growth performance of juvenile striped catfish Pangasianodon hypophthalmus fed diets with varying inclusion levels of corn gluten meal[J]. Aquaculture Nutrition, 2013, 19(3): 258-266. doi: 10.1111/anu.2013.19.issue-3
    [15]
    Abdel-Warith A A, Younis E M, Al-Asgah N A, et al. Maize gluten meal as a protein source in the diets for African catfish Clarias gariepinus (Burchell, 1822) and its effect on liver glycogen and histology[J]. Indian Journal of Fisheries, 2014, 61(3): 74-82.
    [16]
    Masagounder K, Hayward R S, Firman J D. Replacing fish meal with increasing levels of meat and bone meal, soybean meal and corn gluten meal, in diets of juvenile bluegill, Lepomis macrochirus[J]. Aquaculture Research, 2014, 45(7): 1202-1211. doi: 10.1111/are.2014.45.issue-7
    [17]
    Soliman E A, Furuta M. Influence of γ-irradiation on mechanical and water barrier properties of corn protein-based films[J]. Radiation Physics and Chemistry, 2009, 78(7-8): 651-654. doi: 10.1016/j.radphyschem.2009.03.053
    [18]
    Wang F, Han H, Wang Y, et al. Growth, feed utilization and body composition of juvenile golden pompano Trachinotus ovatus fed at different dietary protein and lipid levels[J]. Aquaculture Nutrition, 2013, 19(3): 360-367. doi: 10.1111/anu.2013.19.issue-3
    [19]
    Niu J, Du Q, Lin H Z, et al. Quantitative dietary methionine requirement of juvenile golden pompano Trachinotus ovatus at a constant dietary cystine level[J]. Aquaculture Nutrition, 2013, 19(5): 677-686. doi: 10.1111/anu.2013.19.issue-5
    [20]
    Lin H Z, Tan X H, Zhou C P, et al. Effect of dietary arginine levels on the growth performance, feed utilization, non-specific immune response and disease resistance of juvenile golden pompano Trachinotus ovatus[J]. Aquaculture, 2015, 437: 382-389. doi: 10.1016/j.aquaculture.2014.12.025
    [21]
    Ma X Z, Wang F, Han H, et al. Replacement of dietary fish meal with poultry by-product meal and soybean meal in the diets for golden pompano Trachinotus ovatus reared in net pens[J]. Journal of the World Aquaculture Society, 2014, 45(6): 662-671. doi: 10.1111/jwas.2014.45.issue-6
    [22]
    Wu Y B, Ren G, Qin J G, et al. The suitable dose of gamma irradiation on soybean meal as a fish meal substitute in diets for golden pompano (Trachinotus ovatus)[J]. Aquaculture Research, 2016, 47(6): 1944-1953. doi: 10.1111/are.2016.47.issue-6
    [23]
    AOAC (Association of Official Analytical Chemists). Official Methods of Analysis of Association of Official Analytical Chemists[M]. 16th ed. Arlington, Virgini: AOAC, 1995.
    [24]
    Zheng X Q, Liu X L, Yu S F, et al. Effects of extrusion and starch removal pretreatment on zein proteins extracted from corn gluten meal[J]. Cereal Chemistry, 2014, 91(5): 496-501. doi: 10.1094/CCHEM-07-13-0141-R
    [25]
    Wang Y, Guo J L, Bureau D P, et al. Replacement of fish meal by rendered animal ingredients in feeds for cuneate drum (Nibea miichthioides)[J]. Aquaculture, 2006, 252(2-4): 421-428. doi: 10.1016/j.aquaculture.2005.06.051
    [26]
    Wang Y, Wang F, Ji W X, et al. Optimizing dietary protein sources for Japanese sea bass (Lateolabrax japonicus) with an emphasis on using poultry by-product meal to substitute fish meal[J]. Aquaculture Research, 2015, 46(4): 874-883. doi: 10.1111/are.12242
    [27]
    Wu Y B, Han H, Qin J G, et al. Effect of feeding frequency on growth, feed utilization, body composition and waste output of juvenile golden pompano (Trachinotus ovatus) reared in net pens[J]. Aquaculture Research, 2015, 46(6): 1436-1443. doi: 10.1111/are.2015.46.issue-6
    [28]
    Wu Y V, Rosati R R, Sessa D J, et al. Evaluation of corn gluten meal as a protein source in tilapia diets[J]. Journal of Agricultural and Food Chemistry, 1995, 43(6): 1585-1588. doi: 10.1021/jf00054a032
    [29]
    刘兴旺, 麦康森, 艾庆辉, 等. 玉米蛋白粉替代鱼粉对大菱鲆摄食、生长及体组成的影响[J]. 水产学报, 2012, 36(3): 466-472.

    Liu X W, Mai K S, Ai Q H, et al. Replacement of fish meal by corn gluten meal in diets of Scophthatmus maximus[J]. Journal of Fisheries of China, 2012, 36(3): 466-472.
    [30]
    Deng S X, Tian L X, Liu F J, et al. Toxic effects and residue of aflatoxin B1 in tilapia (Oreochromis niloticus×O. aureus) during long-term dietary exposure[J]. Aquaculture, 2010, 307(3-4): 233-240. doi: 10.1016/j.aquaculture.2010.07.029
    [31]
    DeRouchey J M, Tokach M D, Nelssen J L, et al. Effect of irradiation of individual feed ingredients and the complete diet on nursery pig performance[J]. Journal of Animal Science, 2003, 81(7): 1799-1805. doi: 10.2527/2003.8171799x
    [32]
    Mani V, Chandra P. Effect of feeding irradiated soybean on nutrient intake, digestibility and N-balance in goats[J]. Small Ruminant Research, 2003, 48(2): 77-81. doi: 10.1016/S0921-4488(02)00249-3
    [33]
    Ghanbari F, Ghoorchi T, Shawrang P, et al. Comparison of electron beam and gamma ray irradiations effects on ruminal crude protein and amino acid degradation kinetics, and in vitro digestibility of cottonseed meal[J]. Radiation Physics and Chemistry, 2012, 81(6): 672-678. doi: 10.1016/j.radphyschem.2012.02.014
    [34]
    Cho C Y, Bureau D P. Reduction of waste output from salmonid aquaculture through feeds and feeding[J]. Progressive Fish-Culturist, 1997, 59(2): 155-160. doi: 10.1577/1548-8640(1997)059<0155:ROWOFS>2.3.CO;2
    [35]
    Lazzari R, Baldisserotto B. Nitrogen and phosphorus waste in fish farming[J]. Boletim do Instituto de Pesca, São Paulo, 2008, 34(4): 591-600.
    [36]
    Wang Y, Li K, Han H, et al. Potential of using a blend of rendered animal protein ingredients to replace fish meal in practical diets for malabar grouper (Epinephelus malabricus) [J]. Aquaculture, 2008, 281(1-4): 113-117. doi: 10.1016/j.aquaculture.2008.03.033
    [37]
    Wang Y, Ma X Z, Wang F, et al. Supplementations of poultry by-product meal and selenium yeast increase fish meal replacement by soybean meal in golden pompano (Trachinotus ovatus) diet[J]. Aquaculture Research, 2017, 48(4): 1904-1914. doi: 10.1111/are.2017.48.issue-4
    [38]
    Satoh S, Hernández A, Tokoro T, et al. Comparison of phosphorus retention efficiency between rainbow trout (Oncorhynchus mykiss) fed a commercial diet and a low fish meal based diet[J]. Aquaculture, 2003, 224(1-4): 271-282. doi: 10.1016/S0044-8486(03)00217-5
  • Related Articles

    [1]WANG Yanjiao, ZHANG Defeng, REN Yan, WANG Qing, WANG Yingying, LI Yingying, PAN Houjun, SHI Cunbin, MO Xubing, YIN Jiyuan. Immune effect of Aeromonas veronii vaccines prepared with a low pathogenic strain FS12001 to Carassius auratus gibelio[J]. Journal of fisheries of china, 2024, 48(5): 059420. DOI: 10.11964/jfc.20231114229
    [2]WANG Jianjun, XU Siyu, ZHAO Wenwu, FENG Jianbin, LI Lidong, ZOU Shuming, CUI Lifeng, LI Jiale. Challenges and countermeasures for the high quality development of China's freshwater aquaculture industry under the background of the integrated food security thought[J]. Journal of fisheries of china, 2023, 47(11): 119605. DOI: 10.11964/jfc.20230914179
    [3]ZHAO Yuxi, LIU Xingguo, ZHOU Runfeng, LIU Ziqiu. Effects of light intensity on the growth and physiological performance of Pelteobagrus fulvidraco[J]. Journal of fisheries of china, 2023, 47(7): 079607. DOI: 10.11964/jfc.20210512815
    [4]DONG Shuanglin, DONG Yunwei, HUANG Liuyi, TIAN Xiangli, HAN Limin, LI Dahai, CAO Ling. Toward offshore aquaculture in China: opportunities, challenges and development strategies[J]. Journal of fisheries of china, 2023, 47(3): 039601. DOI: 10.11964/jfc.20220913684
    [5]XIAO Changlun, SUN Yunfei, LU Zhenzhen, CHENG Fangzhou, CHENG Yongxu. Effects of feeding different diets on survival, nutritional composition, digestion and immunity of juvenile Chinese mitten crab (Eriocheir sinensis) during overwintering[J]. Journal of fisheries of china, 2022, 46(10): 1992-2006. DOI: 10.11964/jfc.20220113269
    [6]FENG Wei, LI Hui, TANG Yongkai, SU Shengyan, WANG Meiyao, LI Jianlin, YU Juhua. Effects of formula feed and frozen fish on the growth, gonadal development and muscle quality of Eriocheir sinensis in the monomer culture[J]. Journal of fisheries of china, 2021, 45(5): 748-759. DOI: 10.11964/jfc.20200512261
    [7]ZHANG Gan, ZHANG Ruiqiang, LINGHU Kechuan, ZHOU Weiren, JIANG Ying, ZHOU Yanmin. Effects of oligo-chitosan supplementation on growth performance, body composition, non-specific immunity, and antioxidant capacity of Eriocheir sinensis[J]. Journal of fisheries of china, 2020, 44(8): 1340-1348. DOI: 10.11964/jfc.20190411758
    [8]LI Wenyue, ZUO Zhihan, ZHANG Jingjing, SHANG Bijiao, SUN Jinsheng. Isolation and identification of pathogens of ulcer disease in Cynoglossus semilaevis[J]. Journal of fisheries of china, 2020, 44(4): 672-680. DOI: 10.11964/jfc.20190711874
    [9]XU Chenyuan, CHI Cheng, ZHENG Xiaochuan, LIU Jiadai, ZHANG Caiyan, LIU Wenbin, LIU Yanling, YAN Yanan, HUANG Jian, WANG Sheng. Effects of fermented feed on the growth performance, oxidation resistance, immune function and protein metabolism of juvenile Chinese mitten crabs (Eriocheir sinensis)[J]. Journal of fisheries of china, 2019, 43(10): 2209-2217. DOI: 10.11964/jfc.20190811919
    [10]LI Qingqing, WU Xugan, JIANG Xiaodong, SU Yu, ZHENG Haidi, CHENG Yongxu. Comparison of the reproductive performance, egg colour and biochemical composition between wild-caught and pond-reared Chinese mitten crab (Eriocheir sinensis) broodstock originated from Yangtze population[J]. Journal of fisheries of china, 2019, 43(4): 858-866. DOI: 10.11964/jfc.20171211095
  • Cited by

    Periodical cited type(10)

    1. 高志宝,张婷,李旭光,邓燕飞,周军. 中华绒螯蟹不同家系幼蟹生长性能及性早熟比较试验. 水产养殖. 2024(04): 32-34+57 .
    2. 梁梓龙,姜晓东,张光宝,吴旭干. 超大规格中华绒螯蟹繁育子代生长性能及养殖效果. 中国水产科学. 2024(02): 197-208 .
    3. 瞿诗雨,卢昇,陈松林,刘洋,周茜,王磊,徐文腾,宋煜. 豹纹鳃棘鲈抗哈维氏弧菌遗传参数分析. 渔业科学进展. 2024(04): 15-23 .
    4. 杨帅帅,朱筛成,张冬冬,潘祯祥,李嘉尧,吴旭干,郑善玉. 2种饵料模式对稻田养殖中华绒螯蟹幼蟹养殖性能和生理代谢的影响. 渔业科学进展. 2023(04): 188-200 .
    5. 彭涛,张冬冬,姜晓东,罗明,陈文彬,成永旭,吴旭干. 中华绒螯蟹“长荡湖1号”奇数年群体选育第二代的生长性能和养殖效果评估. 中国水产科学. 2023(10): 1177-1187 .
    6. 范陈伟,姜晓东,成永旭,吴旭干. 中华绒螯蟹二龄早熟和晚熟品系选育第五代(G5)的生长性能和性腺发育评估. 淡水渔业. 2022(06): 92-101 .
    7. 庄振俊,张冬冬,姜晓东,陈文彬,陈晓武,成永旭,吴旭干. 中华绒螯蟹“长荡湖1号”奇数年子一代的成蟹养殖性能评估. 海洋渔业. 2022(06): 747-758 .
    8. 范陈伟,姜晓东,吴旭干,成永旭. 不同规格中华绒螯蟹亲本子一代在扣蟹阶段养殖性能的比较研究. 水产科技情报. 2021(01): 33-39 .
    9. 韩文峰,孙云飞,刘健,鹿珍珍,肖昌伦,张亚文,成方舟,成永旭. 不同饵料投喂模式对中华绒螯蟹幼蟹生长和生理生化的影响. 中国水产科学. 2021(03): 314-325 .
    10. 范陈伟,姜晓东,成永旭,吴旭干. 中华绒螯蟹2龄早熟和晚熟品系选育第4代(G4)在成蟹阶段养殖性能的比较. 水产科技情报. 2021(05): 241-249 .

    Other cited types(5)

Catalog

    Article views (0) PDF downloads (0) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return