• ISSN 1000-0615
  • CN 31-1283/S
CHENG Qingqing, GU Qianhong, FANG Dongdong, LI Xuejun, ZHOU Chuanjiang, MENG Xiaolin, NIE Guoxing. Comparison of population genetic structure of two co-distributed cyprinid species[J]. Journal of fisheries of china, 2017, 41(8): 1169-1182. DOI: 10.11964/jfc.20160910539
Citation: CHENG Qingqing, GU Qianhong, FANG Dongdong, LI Xuejun, ZHOU Chuanjiang, MENG Xiaolin, NIE Guoxing. Comparison of population genetic structure of two co-distributed cyprinid species[J]. Journal of fisheries of china, 2017, 41(8): 1169-1182. DOI: 10.11964/jfc.20160910539

Comparison of population genetic structure of two co-distributed cyprinid species

Funds: 

National Natural Science Foundation of China (31601851); Key Technology Research Project of Henan Province (142102110144, 142102110057, 122102110049, 122102310357); Program for Scientific and Technological Innovation Team in University of Henan Province (14IRTSTHN013)

More Information
  • Corresponding author:

    GU Qianhong. E-mail: qianhong_g@163.com

  • Received Date: September 11, 2016
  • Revised Date: October 16, 2016
  • Available Online: November 26, 2017
  • Published Date: July 31, 2017
  • In order to estimate and compare the genetic diversity and population structure between Abbottina rivularis and Hemiculter leucisculus in the Yellow River and Weihe River in Henan province, we used cytb sequences to estimate population genetic parameters and tested for demographic fluctuations. Our results showed that the population polymorphism of the two species was low. The results from phylogenetic tree, as well as haplotype network structure, showed that A. rivularis and H. leucisculus had three distinct lineages, however, there was no phylogeographic structure. The gene flow with moderate to low among populations explained that the two species had lower genetic diversity and distinct population differentiation. Then we analyzed the Demographic History of A. rivularis and H. leucisculus. Bayesian skyline plot revealed that the stock of the two species declined dramatically 0.019 and 0.026 million years ago, respectively. In view of the population polymorphism, population differentiation and demographic history, we concluded that the genetic diversity of A. rivularis and H. leucisculus was low in this study, and it was necessary to strengthen the protection of their resources.
  • [1]
    贺怀亚, 王佳, 尤平. 棒花鱼(鲤形目, 鲤科)全线粒体基因组测定与分析[J]. 动物分类学报, 2013, 38(4): 695-704.

    He H Y, Wang J, You P. The complete nucleotide sequence of mitochondrial genome of Abbottina rivularis (Cypriniformes, Cyprinidae)[J]. Acta Zootaxonomica Sinica, 2013, 38(4): 695-704(in Chinese).
    [2]
    Dai Y G, Yang J X. Phylogeny and zoogeography of the cyprinid Hemicultrine group (Cyprinidae: Cultrinae)[J]. Zoological Studies, 2003, 42(1): 73-92.
    [3]
    Kang B, He D M, Perrett L, et al. Fish and fisheries in the Upper Mekong: current assessment of the fish community, threats and conservation[J]. Reviews in Fish Biology and Fisheries, 2009, 19(4): 465-480.
    [4]
    Fu C Z, Wu J H, Chen J K, et al. Freshwater fish biodiversity in the Yangtze River basin of China: patterns, threats and conservation[J]. Biodiversity and Conservation, 2003, 12(8): 1649-1685.
    [5]
    González-Astorga J, Núñez-Farfán J. Effect of habitat fragmentation on the genetic structure of the narrow endemic Brongniartia vazquezii[J]. Evolutionary Ecology Research, 2001, 3(7): 861-872.
    [6]
    Zuberogoitia I, Zalewska H, Zabala J, et al. The impact of river fragmentation on the population persistence of native and alien mink: an ecological trap for the endangered European mink[J]. Biodiversity and Conservation, 2013, 22(1): 169-186.
    [7]
    Liao X L, Wang D, Yu X M, et al. Characterization of novel microsatellite loci in rare minnow (Gobiocypris rarus) and amplification in closely related species in Gobioninae[J]. Conservation Genetics, 2007, 8(4): 1003-1007.
    [8]
    Li D Y, Kang D H, Yin Q Q, et al. Microsatellite DNA marker analysis of genetic diversity in wild common carp (Cyprinus carpio L.) populations[J]. Journal of Genetics and Genomics, 2007, 34(11): 984-993.
    [9]
    Yang J Q, Tang W Q, Sun Y, et al. Microsatellite diversity and population genetic structure of Squalidus argentatus (Cyprinidae) on the Island of Hainan and mainland China[J]. Biochemical Systematics and Ecology, 2013, 50(4): 7-15.
    [10]
    茹辉军, 王海军, 赵伟华, 等. 黄河干流鱼类群落特征及其历史变化[J]. 生物多样性, 2010, 18(2): 169-174.

    Ru H J, Wang H J, Zhao W H, et al. Fishes in the mainstream of the Yellow River: assemblage characteristics and historical changes[J]. Biodiversity Science, 2010, 18(2): 169-174(in Chinese).
    [11]
    Yan Y Z, Chen Y F. Changes in the life history of Abbottina rivularis in Lake Fuxian[J]. Journal of Fish Biology, 2007, 70(3): 959-964.
    [12]
    Hayashi K, Kim E J, Onikura N. Growth and habitat use of the Chinese false gudgeon, Abbottina rivularis, in an irrigation channel near the Ushizu River, northern Kyushu Island, Japan[J]. Ichthyological Research, 2013, 60(3): 218-226.
    [13]
    曾国权, 吕耀平, 黄佩佩, 等. 餐条、大眼华鳊含肉率和肌肉营养成分分析[J]. 温州大学学报(自然科学版), 2012, 33(5): 1-7.

    Zeng G Q, Lü Y P, Huang P P, et al. Analysis of flesh content and nutritional component in the muscle of Hemiculter leucisculus Basilewsky and Sinibrama macrops Gunther[J]. Journal of Wenzhou University Natural Sciences, 2012, 33(5): 1-7(in Chinese).
    [14]
    姜巨峰, 韩现芹, 傅志茹, 等. 棒花鱼肌肉主要营养成分分析[J]. 河北渔业, 2011(10): 1-3, 16.

    Jiang J F, Han X Q, Fu Z R, et al. Analysis and evaluation of the nutritional components of Abbottina rivularis muscle[J]. Hebei Fisheries, 2011(10): 1-3, 16(in Chinese).
    [15]
    李强, 李伟靖, 赵俊. 鰐( Hemiculter leucisculus)性腺发育的组织学研究[J]. 广州大学学报(自然科学版), 2009, 8(1): 63-67.

    Li Q, Li W J, Zhao J. Histological studies on the gonadial development of Hemiculter leucisculus[J]. Journal of Guangzhou University(Natural Science Edition), 2009, 8(1): 63-67(in Chinese).
    [16]
    林植华, 雷焕宗, 陈利丽, 等. 棒花鱼形态特征的两性异形和雌性个体生育力[J]. 四川动物, 2007, 26(4): 910-913.

    Lin Z H, Lei H Z, Chen L L, et al. Sexual dimorphism in morphological traits and female individual fecundity of Abbottina rivularis[J]. Sichuan Journal of Zoology, 2007, 26(4): 910-913(in Chinese).
    [17]
    Crandall K A, Posada D, Vasco D. Effective population sizes: missing measures and missing concepts[J]. Animal Conservation, 1999, 2(4): 317-319.
    [18]
    Amor M D, Norman M D, Cameron H E, et al. Allopatric speciation within a cryptic species complex of Australasian octopuses[J]. PLoS One, 2014, 9(6): e98982.
    [19]
    刘连为, 许强华, 陈新军. 基于线粒体CO I和Cyt b基因序列的北太平洋柔鱼种群遗传结构研究[J]. 水产学报, 2012, 36(11): 1675-1684.

    Liu L W, Xu Q H, Chen X J. Population genetic structure of Ommastrephes bartramii in the North Pacific Ocean based on the CO I and Cyt b gene sequences analysis[J]. Journal of Fisheries of China, 2012, 36(11): 1675-1684(in Chinese).
    [20]
    Eiríksson G M, Árnason E. Gene flow across the N-Atlantic and sex-biased dispersal inferred from mtDNA sequence variation in saithe, Pollachius virens[J]. Environmental Biology of Fishes, 2015, 98(1): 67-79.
    [21]
    Chen W T, Du K, He S P. Genetic structure and historical demography of Schizothorax nukiangensis (Cyprinidae) in continuous habitat[J]. Ecology and Evolution, 2015, 5(4): 984-995.
    [22]
    Jeanmougin F, Thompson J D, Gouy M, et al. Multiple sequence alignment with ClustalX[J]. Trends in Biochemical Sciences, 1998, 23(10): 403-405.
    [23]
    Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11): 1451-1452.
    [24]
    Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
    [25]
    Clement M, Posada D, Crandall K P D. TCS: a computer program to estimate gene genealogies[J]. Molecular Ecology, 2000, 9(10): 1657-1659.
    [26]
    Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics Online, 2005, 1: 47-50.
    [27]
    Drummond A J, Suchard M A, Xie D, et al. Bayesian phylogenetics with BEAUti and the BEAST 1.7[J]. Molecular Biology and Evolution, 2012, 29(8): 1969-1973.
    [28]
    Rambaut A, Drummond A J. Tracer v1.4[J]. Encyclopedia of Atmospheric Sciences, 2007, 141(3567): 2297-2305.
    [29]
    Beerli P, Felsenstein J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(8): 4563-4568.
    [30]
    Harrison R G. Molecular changes at speciation[J]. Annual Review of Ecology and Systematics, 1991, 22: 281-308.
    [31]
    Vellend M, Geber M A. Connections between species diversity and genetic diversity[J]. Ecology Letters, 2005, 8(7): 767-781.
    [32]
    Ozerov M Y, Veselov A E, Lumme J, et al. Temporal variation of genetic composition in Atlantic salmon populations from the Western White Sea Basin: influence of anthropogenic factors?[J] BMC Genetics, 2013, 14(1): 88.
    [33]
    Ginson R, Walter R P, Mandrak N E, et al. Hierarchical analysis of genetic structure in the habitat-specialist Eastern Sand Darter (Ammocrypta pellucida)[J]. Ecology and Evolution, 2015, 5(3): 695-708.
    [34]
    顾钱洪, 周传江, 孟晓林, 等. 卫河水系新乡段鱼类资源现状调查[J]. 河南水产, 2015(4): 23-26.

    Gu Q H, Zhou C J, Meng X L, et al. Current status of fishery resources in Xinxiang area of Wei river system[J]. Journal of Fisheries of Henan 2015(4): 23-26(in Chinese).
    [35]
    刘思情, 唐琼英, 李小娟, 等. 基于线粒体细胞色素b基因的黑鳍鳈(Sarcocheilichthys nigripinnis)生物地理学过程分析[J]. 动物学研究, 2013, 34(5): 437-445.

    Liu S Q, Tang Q Y, Li X J, et al. Phylogeographic analyses of Sarcocheilichthys nigripinnis (Teleostei: Cyprinidae) based on mitochondrial DNA Cyt b gene sequences[J]. Zoological Research, 2013, 34(5): 437-445(in Chinese).
    [36]
    蓝昭军, 范明君, 黄小林, 等. 基于线粒体cytb基因的中国南方唇逕(Hermibarbus labeo)和间逕(Hermibarbus medius)种群分化及亲缘地理研究[J]. 生态学报, 2016, 36(19): 6091-6102.

    Lan Z J, Fan M J, Huang X L, et al. Population diversity and phylogeography of Hemibarbus labeo and Hemibarbus medius in South China[J]. Acta Ecologica Sinica, 2016, 36(19): 6091-6102(in Chinese).
    [37]
    张东亚, 汪登强, 刘绍平, 等. 怒江濒危鱼类缺须盆唇鱼基于线粒体Cyt b序列的群体遗传结构分析[J]. 中国水产科学, 2009, 16(4): 477-486.

    Zhang D Y, Wang D Q, Liu S P, et al. Population genetic structure analysis of endangered species Placocheilus cryptonemus in the Nujiang River based on Cyt b sequences of mtDNA[J]. Journal of Fishery Sciences of China, 2009, 16(4): 477-486(in Chinese).
    [38]
    付晓艳. 长江和珠江水系青鱼线粒体细胞色素b基因遗传多样性分析[D]. 广州: 暨南大学, 2011.

    Fu X Y. Genetic diversity of mitochondrial cytochromes b in black carp from the Yangtze and the Pearl River[D]. Guangzhou: Ji’nan University, 2011(in Chinese).
    [39]
    程晓凤. 长江上游特有鱼长鳍吻逗(Rhinogobio ventralis)遗传结构分析[D]. 重庆: 西南大学, 2013.

    Cheng X F. Genetic structure of Rhinogobio ventralis endemic to the upper Yangtze River[D].Chongqing: Southwest University, 2013(in Chinese).
    [40]
    Grant W A S, Bowen B W. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 1998, 89(5): 415-426.
    [41]
    陈星, 沈永义, 张亚平. 线粒体DNA在分子进化研究中的应用[J]. 动物学研究, 2012, 33(6): 566-573.

    Chen X, Shen Y Y, Zhang Y P. Review of mtDNA in molecular evolution studies[J]. Zoological Research, 2012, 33(6): 566-573(in Chinese).
    [42]
    范启, 何舜平. 长江流域鰐种群遗传多样性和遗传结构分析[J]. 水生生物学报, 2014, 38(4): 627-635.

    Fan Q, He S P. The pattern of upper and middle Yangtze drainages shapes the genetic structure and diversity of Hemiculter leucisculus revealed by mitochondrial DNA locus[J]. Acta Hydrobiologica Sinica, 2014, 38(4): 627-635(in Chinese).
    [43]
    苏丽维. 中国南部两种同域分布的鲤科鱼类比较亲缘地理研究[D]. 上海: 上海海洋大学, 2014.

    Su L W. The comparative phylogeography of two co-distributed cyprinid species from Southern China[D]. Shanghai: Shanghai Ocean University, 2014(in Chinese).
    [44]
    Nei M, Maruyama T, Chakraborty R. The bottleneck effect and genetic variability in populations[J]. Evolution, 1975, 29(1): 1-10.
    [45]
    Miyake T, Nakajima J, Onikura N, et al. The genetic status of two subspecies of Rhodeus atremius, an endangered bitterling in Japan[J]. Conservation Genetics, 2011, 12(2): 383-400.
    [46]
    赵明, 宋炜, 马春艳, 等. 基于线粒体CO I基因序列的棘头梅童鱼7个野生群体遗传结构分析[J]. 中国水产科学, 2015, 22(2): 233-242.

    Zhao M, Song W, Ma C Y, et al. Population genetic structure of Collichthys lucidus based on the mitochondrial cytochrome oxidase subunit I sequence[J]. Journal of Fishery Sciences of China, 2015, 22(2): 233-242(in Chinese).
    [47]
    Whitlock MC. G'ST and D do not replace FST[J]. Molecular Ecology, 2011, 20(6): 1083-1091.
    [48]
    Balloux F, Lugon-Moulin N. The estimation of population differentiation with microsatellite markers[J]. Molecular Ecology, 2002, 11(2): 155-165.
    [49]
    安苗, 周其椿,曹恒源, 等. 贵州两地理群体鲫的系统发育及遗传分化[J]. 水产学报, 2016, 40(2): 178-188.

    An M, Zhou Q C, Cao H Y, et al. Phylogenetic relationship and genetic differentiation of two geographical populations of Carassius auratus in Guizhou Province[J]. Journal of Fisheries of China, 2016, 40(2): 178-188(in Chinese).
    [50]
    陈骁. 中国南部沿海条纹斑竹鲨和尖头斜齿鲨种群遗传学研究[D]. 厦门: 厦门大学, 2008.

    Chen X. Population genetics research of Chiloscyllium plagiosum and Scoliodon laticaudusin China’s Southern Coast[D]. Xiamen: Xiamen University, 2008(in Chinese).
    [51]
    赵凯, 杨公社, 李俊兵, 等. 黄河裸裂尻鱼群体遗传结构和Cyt b序列变异[J]. 水生生物学报, 2006, 30(2): 129-133.

    Zhao K, Yang G S, Li J B, et al. Phylogenetic structure of Schizopy gopsis pylzovi populations from mitochondrial cytochrome b gene sequence variations[J]. Acta Hydrobiologica Sinica, 2006, 30(2):129-133(in Chinese).
    [52]
    张宏, 赵良杰, 胡忠军, 等. 千岛湖和长江黄尾鲴种群的遗传变异研究[J]. 上海海洋大学学报, 2015, 24(1): 12-19.

    Zhang H, Zhao L J, Hu Z J, et al. Genetic variation analysis of Xenocypris davidi populations from Qiandao Lake and Yangtze River[J]. Journal of Shanghai Ocean University, 2015, 24(1): 12-19(in Chinese).
    [53]
    Guo S S, Zhang G R, Guo X Z, et al. Genetic diversity and population structure of Schizopygopsis younghusbandi, regan in the Yarlung Tsangpo River inferred from mitochondrial DNA sequence analysis[J]. Biochemical Systematics and Ecology, 2014, 57: 141-151.
    [54]
    Goodier S A M, Cotterill F P D, O'Ryan C, et al. Cryptic diversity of African tigerfish (Genus, Hydrocynus) reveals palaeogeographic signatures of linked Neogene geotectonic events[J]. PLoS One, 2011, 6(12): e28775.
    [55]
    Gao Y, Wang S Y, Luo J, et al. Quaternary palaeoenvironmental oscillations drove the evolution of the Eurasian Carassius auratus complex (Cypriniformes, Cyprinidae)[J]. Journal of Biogeography, 2012, 39(12): 2264-2278.
    [56]
    Waters J M, Craw D, Burridge C P, et al. Within-river genetic connectivity patterns reflect contrasting geomorphology[J]. Journal of Biogeography, 2015, 42(12): 2452-2460.
    [57]
    Beneteau C L, Mandrak N E, Heath D D. The effects of river barriers and range expansion of the population genetic structure and stability in Greenside darter (Etheostoma blennioides) populations[J]. Conservation Genetics, 2009, 10(2): 477-487.
    [58]
    Husemann M, Ray J W, King R S, et al. Comparative biogeography reveals differences in population genetic structure of five species of stream fishes[J]. Biological Journal of the Linnean Society, 2012, 107(4): 867-885.
    [59]
    Reid S M, Wilson C C, Mandrak N E, et al. Population structure and genetic diversity of black redhorse (Moxostoma duquesnei) in a highly fragmented watershed[J]. Conservation Genetics, 2008, 9(3): 531-546.
    [60]
    Perea S, Doadrio I. Phylogeography, historical demography and habitat suitability modelling of freshwater fishes inhabiting seasonally fluctuating Mediterranean river systems: a case study using the Iberian cyprinid Squalius valentinus[J]. Molecular Ecology, 2015, 24(14): 3706-3722.
    [61]
    李吉均, 方小敏. 青藏高原隆起与环境变化研究[J]. 科学通报, 1998, 43(15): 1569-1574.

    Li J J, Fang X M. Uplift of the Tibetan Plateau and environmental changes[J]. Chinese Science Bulletin, 1998, 43(15): 1569-1574 (in Chinese).
    [62]
    傅建利, 张珂, 马占武, 等. 中更新世晚期以来高阶地发育与中游黄河贯通[J]. 地学前缘, 2013, 20(4): 166-181.

    Fu J L, Zhang K, Ma Z W, et al. The terrace (T5 and T4) formation since the late Middle Pleistocene and its implication in the through cutting of the middle reach of Yellow River[J]. Earth Science Frontiers, 2013, 20(4): 166-181(in Chinese).
    [63]
    何哲峰. 黄河河套段更新世晚期古湖问题的初步研究[D]. 北京: 中国地质科学院, 2009.

    He Z F. A preliminary study on the lacustrine sediment sequence of late pleistocene in Hetao Basin, Inner Mongolia, China[D]. Beijing: Chinese Academy of Geological Sciences, 2009(in Chinese).
    [64]
    胡小猛, 傅建利, 李有利, 等. 中更新世中晚期以来汾河流域地貌阶段性发育及成因分析[J]. 地质力学学报, 2002, 8(2): 165-172.

    Hu XM, Fu J L, Li Y L, et al. The analysis on the development of alluvial and lake landform in fen river drainage basins[J]. Journal of Geomechanics, 2002, 8(2): 165-172(in Chinese).
    [65]
    Schultheiß R, Wilke T, Jørgensen A, et al. The birth of an endemic species flock: demographic history of the Bellamya group (Gastropoda, Viviparidae) in Lake Malawi[J]. Biological Journal of the Linnean Society, 2011, 102(1): 130-143.
    [66]
    Szarowska M, Hofman S, Osikowski A, et al. Divergence preceding island formation among Aegean insular populations of the freshwater snail genus Pseudorientalia (Caenogastropoda: Truncatelloidea)[J]. Zoological Science, 2014, 31(10): 680-686.

Catalog

    Article views (1020) PDF downloads (9) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return