• ISSN 1000-0615
  • CN 31-1283/S
LUO Heng, ZHAO Liangjie, LI Feng, GUO Haisong, SHEN Hong, LIU Qigen. Effects of the introduction of cultured turtle on soil bacterial community structure in paddy field[J]. Journal of fisheries of china, 2018, 42(5): 720-732. DOI: 10.11964/jfc.20170310730
Citation: LUO Heng, ZHAO Liangjie, LI Feng, GUO Haisong, SHEN Hong, LIU Qigen. Effects of the introduction of cultured turtle on soil bacterial community structure in paddy field[J]. Journal of fisheries of china, 2018, 42(5): 720-732. DOI: 10.11964/jfc.20170310730

Effects of the introduction of cultured turtle on soil bacterial community structure in paddy field

Funds: 

Special Fund for Agro-scientific Research in the Public Interest(201203083); Shanghai University Knowledge Service Platform Project (ZF1206)

More Information
  • Corresponding author:

    LIU Qigen. E-mail: qgliu@shou.edu.cn

  • Received Date: March 01, 2017
  • Revised Date: April 22, 2017
  • Available Online: March 15, 2018
  • Published Date: April 30, 2018
  • The integrated agri-aquaculture system (IAAS) has become one of the main directions for the sustainable development of agriculture because of its good ecological environmental effect and the ability to produce enough green rice to meet the market demand for high quality food. It is important to understand the structural characteristics of soil bacterial community in this compound system for the improvement of planting and breeding and the realization of ecological regulation. In this study, Illumina high-throughput sequencing was used to compare the surface soil and rhizosphere soil bacterial community structure among rice-turtle co-culture (R-T) and rice monoculture (R-M), and provide the theoretical basis for the accumulation of data of rice-turtle co-culture ecology and the optimization of production technology for comprehensive cultivation of rice turtle co-culture. The results showed that Proteobacteria, Acidobacteria, Bacteroidetes, Nitrospirae and Chloroflexi were the main phyla in all paddy soil. Compared with R-M, the relative abundance of Chloroflexi, Nitrospirae and Acidobacteria increased and the relative abundance of Proteobacteria and Bacteroidetes was reduced in the surface soil of the R-T. In rhizosphere soil, compared with R-M, the relative abundance of Nitrospirae, Bacteroidetes and Proteobacter increased, and the relative abundance of Chloroflexi and Acidobacteria reduced in R-T treatments. The main genera were Acidobacteria bacterium_uncultured, Nitrosomonadaceae_uncultured, Nitrospiraceae_uncultured, Geobacter, Gemmatimonadaceae_uncultured and Xanthomonadales_norank. In the two models, the relative abundance of Nitrospiraceae_uncultured and Geobacter in rhizosphere soil was significantly different (P<0.05), and the relative abundance ofNitrosomonadaceae_uncultured, Nitrospiraceae_uncultured, Gemmatimonadaceae_uncultured and Acidobacteria bacterium_uncultured in the surface soils was significantly different (P<0.05). PCA and cluster analysis showed that R-T treatments exerted a significant effect on the bacterial community structure of surface soils, and also affected the rhizosphere soil bacterial community structure to a certain extent. Overall, this study provides microbial ecological evidences for the advantages of rice – turtle integrated system over rice monoculture.
  • [1]
    Edwards J, Johnson C, Santos-Medellín C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): E911-E920.
    [2]
    夏北成, Zhou J Z, Tiedje J M. 植被对土壤微生物群落结构的影响[J]. 应用生态学报, 1998, 9(3): 296-300.

    Xia B C, Zhou J Z, Tiedje J M. Effect of vegetation on structure of soil microbial community[J]. Chinese Journal of Applied Ecology, 1998, 9(3): 296-300(in Chinese).
    [3]
    张彩霞. 新一代高通量测序技术研究土壤微生物群落结构对环境条件的响应[D]. 南京: 南京农业大学, 2012.

    Zhang C X. The research of microorganism composition responses to environment conditions with the next generation high throughput DNA sequencing technology[D]. Nanjing: Nanjing Agricultural University, 2012(in Chinese).
    [4]
    钟文辉, 蔡祖聪. 土壤微生物多样性研究方法[J]. 应用生态学报, 2004, 15(5): 899-904.

    Zhong W H, Cai Z C. Methods for studying soil microbial diversity[J]. Chinese Journal of Applied Ecology, 2004, 15(5): 899-904(in Chinese).
    [5]
    夏围围, 贾仲君. 高通量测序和DGGE分析土壤微生物群落的技术评价[J]. 微生物学报, 2014, 54(12): 1489-1499.

    Xia W W, Jia Z J. Comparative analysis of soil microbial communities by pyrosequencing and DGGE[J]. Acta Microbiologica Sinica, 2014, 54(12): 1489-1499(in Chinese).
    [6]
    蔡艳, 郝明德, 张丽琼, 等. 应用454测序技术分析种植制度对黑垆土微生物多样性的影响[J]. 作物学报, 2015, 41(2): 339-346.

    Cai Y, Hao M D, Zhang L Q, et al. Effect of cropping systems on microbial diversity in black loessial soil tested by 454 sequencing technology[J]. Acta Agronomica Sinica, 2015, 41(2): 339-346(in Chinese).
    [7]
    Bates S T, Berg-Lyons D, Caporaso J G, et al. Examining the global distribution of dominant archaeal populations in soil[J]. The ISME Journal, 2011, 5(5): 908-917.
    [8]
    Tilman D, Cassman K G, Matson P A, et al. Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418(6898): 671-677.
    [9]
    Bromley D W. Food security: Beyond technology[J]. Science, 2010, 328(5975): 169.
    [10]
    Pretty J. Agricultural sustainability: Concepts, principles and evidence[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363(1491): 447-465.
    [11]
    Frei M, Razzak M A, Hossain M M, et al. Methane emissions and related physicochemical soil and water parameters in rice-fish systems in Bangladesh[J]. Agriculture, Ecosystems & Environment, 2007, 120(2-4): 391-398.
    [12]
    Frei M, Becker K. A greenhouse experiment on growth and yield effects in integrated rice-fish culture[J]. Aquaculture, 2005, 244(1-4): 119-128.
    [13]
    甘德欣, 黄璜, 蒋廷杰. 免耕稻鸭复合系统生态学特性研究Ⅱ. 土壤生物学特性[J]. 湖南农业大学学报(自然科学版), 2005, 31(1): 35-38.

    Gan D X, Huang H, Jiang T J. The ecological characteristis of no-tillage rice-duck complex system Ⅱ. The microbe amounts and microbe biomass of soil[J]. Journal of Hunan Agricultural University (Natural Sciences), 2005, 31(1): 35-38(in Chinese).
    [14]
    王思潮, 曹凑贵, 李成芳, 等. 耕作模式对冷浸田水稻产量和土壤特性的影响[J]. 中国生态农业学报, 2014, 22(10): 1165-1173.

    Wang S C, Cao C G, Li C F, et al. Effects of cultivation patterns on rice yield and soil properties in cold waterlogged paddy fields[J]. Chinese Journal of Eco-Agriculture, 2014, 22(10): 1165-1173(in Chinese).
    [15]
    鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.

    Bao S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000(in Chinese).
    [16]
    Schloss P D, Westcott S L, Ryabin T, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541.
    [17]
    Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(D1): D590-D596.
    [18]
    R Development Core Team. R: A Language and Environment for Statistical Computing[M]. Vienna, Austria: R Foundation for Statistical Computing, 2011.
    [19]
    袁红朝, 吴昊, 葛体达, 等. 长期施肥对稻田土壤细菌、古菌多样性和群落结构的影响[J]. 应用生态学报, 2015, 26(6): 1807-1813.

    Yuan H Z, Wu H, Ge T D, et al. Effects of long-term fertilization on bacterial and archaeal diversity and community structure within subtropical red paddy soils[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1807-1813(in Chinese).
    [20]
    陈哲, 陈春兰, 秦红灵, 等. 化肥对稻田土壤细菌多样性及硝化、反硝化功能菌组成的影响[J]. 生态学报, 2009, 29(11): 6142-6147.

    Chen Z, Chen C L, Qin H L, et al. Effect of fertilization on bacterial community, genetic diversity of amoA and nosZ genes in paddy soil[J]. Acta Ecologica Sinica, 2009, 29(11): 6142-6147(in Chinese).
    [21]
    Ge Y, Zhang J B, Zhang L M, et al. Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in northern China[J]. Journal of Soils and Sediments, 2008, 8(1): 43-50.
    [22]
    Albertsen M, Hansen L B S, Saunders A M, et al. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal[J]. The ISME Journal, 2012, 6(6): 1094-1106.
    [23]
    段亮, 夏四清, 宋永会, 等. 高密度微阵列基因芯片技术在微生物分子生态学研究中的运用[J]. 环境科学, 2009, 30(12): 3691-3697.

    Duan L, Xia S Q, Song Y H, et al. Using high-density universal 16S rRNA microarray in microbial molecular ecology research[J]. Environmental Science, 2009, 30(12): 3691-3697(in Chinese).
    [24]
    Ma Q, Qu Y Y, Shen W L, et al. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing[J]. Bioresource Technology, 2015, 179: 436-443.
    [25]
    Jangid K, Williams M A, Franzluebbers A J, et al. Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems[J]. Soil Biology and Biochemistry, 2008, 40(11): 2843-2853.
    [26]
    Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology, 1993, 59(3): 695-700.
    [27]
    Kirchman D L, Cottrell M T, Lovejoy C. The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes[J]. Environmental Microbiology, 2010, 12(5): 1132-1143.
    [28]
    赵翔刚, 罗衡, 刘其根,等. 稻田养殖沙塘鳢对稻田水体及底泥微生物群落结构及多样性的影响[J]. 淡水渔业, 2017, 47(4):8-14.

    Zhao X G, Luo H, Liu Q G, et al. Influence of the cultured Odontobutis obcurus to the microbial community structure and diversity in rice-fish system, 2017, 47(4):8-14(in Chinese).
    [29]
    Wietz M, Hall M R, Høj L. Effects of seawater ozonation on biofilm development in aquaculture tanks[J]. Systematic and Applied Microbiology, 2009, 32(4): 266-277.
    [30]
    甘德欣, 黄璜, 黄梅, 等. 免耕稻鸭复合系统生态学特性研究Ⅰ. 土壤物理性状及养分动态变化[J]. 湖南农业大学学报(自然科学版), 2004, 30(1): 24-28.

    Gan D X, Huang H, Huang M, et al. The ecological characteristis of no-tillage rice-duck complex systemⅠ. the soil physical and chemical characteristic[J]. Journal of Hunan Agricultural University (Natural Sciences), 2004, 30(1): 24-28(in Chinese).
    [31]
    Singh B K, Millard P, Whiteley A S, et al. Unravelling rhizosphere-microbial interactions: Opportunities and limitations[J]. Trends in Microbiology, 2004, 12(8): 386-393.
    [32]
    Hartmann A, Schmid M, Van Tuinen D, et al. Plant-driven selection of microbes[J]. Plant and Soil, 2009, 321(1-2): 235-257.
    [33]
    展茗, 曹凑贵, 汪金平, 等. 稻鸭、稻鱼复合生态系统土壤微生物多样性特征分析[J]. 土壤学报, 2008, 45(6): 1179-1183.

    Zhan M, Cao C G, Wang J P, et al. Analysis of diversity of soil microbial community of the wetland rice-duck and rice-fish complex ecosystem[J]. Acta Pedologica Sinica, 2008, 45(6): 1179-1183(in Chinese).
    [34]
    汪其同, 朱婉芮, 刘梦玲, 等. 基于高通量测序的杨树人工林根际和非根际细菌群落结构比较[J]. 应用与环境生物学报, 2015, 21(5): 967-973.

    Wang Q T, Zhu W R, Liu M L, et al. Comparison on bacterial community of rhizosphere and bulk soil of poplar plantation based on pyrosequencing[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(5): 967-973(in Chinese).
    [35]
    Martiny A C, Albrechtsen H J, Arvin E, et al. Identification of bacteria in biofilm and bulk water samples from a nonchlorinated model drinking water distribution system: Detection of a large nitrite-oxidizing population associated with Nitrospira. spp.[J]. Applied and Environmental Microbiology, 2005, 71(12): 8611-8617.
    [36]
    Nemergut D R, Costello E K, Hamady M, et al. Global patterns in the biogeography of bacterial taxa[J]. Environmental Microbiology, 2011, 13(1): 135-144.
    [37]
    王昂, 王武, 马旭洲, 等. 养蟹稻田水环境部分因子变化研究[J]. 湖北农业科学, 2011, 50(17): 3514-3519.

    Wang A, Wang W, Ma X Z, et al. Study on the changes of water environmental factors in rice-crab culture system[J]. Hubei Agricultural Science, 2011, 50(17): 3514-3519(in Chinese).
    [38]
    由焦化, 夏淑红, 王保莉, 等. 淹水时间对水稻土中地杆菌科群落结构及丰度的影响[J]. 微生物学报, 2011, 51(6): 796-804.

    You J H, Xia S H, Wang B L, et al. Effect of flooding time on community structure and abundance of Geobacteraceae in paddy soil[J]. Acta Microbiologica Sinica, 2011, 51(6): 796-804(in Chinese).
    [39]
    Yachi S, Loreau M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1463-1468.
    [40]
    Duineveld B M, Rosado A S, Van Elsas J D, et al. Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns[J]. Applied and Environmental Microbiology, 1998, 64(12): 4950-4957.
  • Cited by

    Periodical cited type(31)

    1. 赵秀侠,卢文轩,梁阳阳,方婷,宋光同,王芬,徐笑娜,陈祝,蒋业林,方国侠. 安徽合肥地区稻鳖共作模式对稻田浮游植物群落结构影响. 东北农业大学学报. 2024(06): 67-77 .
    2. 吴本丽,黄龙,吴仓仓,陈静,陈夏君,梅耀萍,何吉祥. 投喂水平对稻田养殖中华鳖摄食生态的影响. 华南农业大学学报. 2024(06): 929-938 .
    3. 刘瑛涵,任伟征,赵璐峰,郭梁,刘益曦,胡亮亮,陈欣. 稻鱼共生系统土壤微生物群落组成和功能特征. 华南农业大学学报. 2024(06): 865-877 .
    4. 徐程,倪成,邱小琮,王凯,袁金龙. 宁夏引黄灌区稻蟹共作对土壤微生物群落结构及理化因子的影响. 微生物学报. 2024(12): 4817-4832 .
    5. 步洪凤,梁玉刚,方宝华. 稻田综合种养主要模式及其研究进展. 杂交水稻. 2023(01): 10-19 .
    6. 周先文,彭英海,龙江陵,周宇轩,漆亮. 藕塘鳖鱼生态养殖试验. 水产养殖. 2023(04): 56-57+72 .
    7. 刘平平,龚彦超,任丽平. 稻田生态种养模式对土壤生态环境的影响研究进展. 环境保护与循环经济. 2023(04): 51-53 .
    8. 宋宇,王鹏,韦月平. 基于宏基因组测序的稻蟹共作稻田根际土壤微生物群落功能分析. 西北农业学报. 2023(09): 1466-1475 .
    9. 刘金雨,张瑞,罗亮,王世会,郭坤,白庆利,徐伟,赵志刚. 不同稻蟹共作模式下寒区稻田土壤微生物的高通量测序研究. 水产学杂志. 2023(05): 118-124+130 .
    10. 许忠伟,刘春月,石佳悦,邵霞,宋宇. 稻蟹共作田不同生育期水稻根际土壤细菌群落结构和功能分析. 中国稻米. 2022(04): 61-66 .
    11. 苏俊宇,陈辰,李伟,雷骆,祝骏贤,罗来福,耿露露,史伟,李健松,张继平,朱新平. 2种充气模式中华鳖工厂化养殖水体水质及微生物群落结构. 广东海洋大学学报. 2022(05): 45-53 .
    12. 陶先法,李冰,喻召雄,侯诒然,王龙,朱健. 稻虾共生模式对水稻结实期根系分泌物及微生物的影响. 水产学报. 2022(11): 2122-2133 . 本站查看
    13. 马文清,郭强,闭德金,唐利球,韦持章,李宇翔,黄有总,王梓廷. 蔗鸭共生对红壤蔗地土壤养分、酶活性及细菌多样性的影响. 南方农业学报. 2022(09): 2415-2424 .
    14. 杨武广,王君,温凯,仇景涛. 中国稻鳖共作技术研究进展与展望. 中国农学通报. 2022(31): 12-16 .
    15. 邓时铭,刘丽,吴浩,陈湘艺,邹利,蒋国民,王冬武. 稻龟综合种养土壤磷营养物质分析研究. 水产养殖. 2021(01): 17-23 .
    16. 王芬,程云生,侯冠军,季索菲,宋光同,李虎,张晔,吴育春,李正荣,朱成骏,李杰,蒋业林. 藕鳖共作对水环境和藕鳖生长性能的影响. 中国农学通报. 2021(04): 159-164 .
    17. 邓时铭,何志刚,邹利,刘丽,李金龙,郑梦婷,蒋国民,王冬武,刘晓燕. 稻鳅共作模式对土壤营养、酶活性及微生物多样性的影响. 江苏农业科学. 2021(17): 216-220 .
    18. 贾艺河,林小钢,江广渝,郑永华,苏胜齐,唐洪玉. 稻鳖鸭综合种养对稻田杂草影响. 水产养殖. 2021(09): 28-32 .
    19. 朱秀秀,彭成林,佀国涵,沙爱华,袁家富,赵书军,徐大兵. 稻虾共作模式对稻田土壤细菌群落结构与多样性的影响. 土壤通报. 2021(05): 1121-1128 .
    20. 丁姣龙,孟祥杰,王忍,陈璐,周晶,陈灿,黄璜. 长期应用稻鳖共生系统对土壤细菌群落结构及其多样性的影响. 南方农业学报. 2021(07): 1860-1868 .
    21. 李文博,刘少君,叶新新,郜红建. 稻田综合种养模式对土壤生态系统的影响研究进展. 生态与农村环境学报. 2021(10): 1292-1300 .
    22. 石先罗,章卫. 稻虾共作模式下水体及土壤氮磷变化特征研究. 江西科学. 2021(05): 805-809 .
    23. 陈静,何吉祥,吴本丽,黄龙,张烨. 中华鳖投放密度对稻鳖共生田土壤细菌群落结构的影响. 南方农业学报. 2021(10): 2650-2661 .
    24. 聂志娟,李非凡,赵文武,徐钢春,刘波,王裕玉,邵乃麟,胡佳雯,徐跑. 哈尼梯田稻鲤共作模式下的微生物群落结构. 水产学报. 2020(03): 469-479 . 本站查看
    25. 张军,刘菁,陈长青. 有机稻鸭共作对土壤理化性状和细菌群落空间分布的影响. 生态学杂志. 2020(03): 822-829 .
    26. 宋宇,王鹏,韦月平. 不同稻田栽培模式下土壤细菌群落多样性分析. 西南农业学报. 2020(02): 263-267 .
    27. 宋宇,王鹏,韦月平. 不同稻田共作模式对土壤细菌群落结构的影响. 西北农业学报. 2020(02): 216-223 .
    28. 杨智景,顾海龙,顾明,王慧茹,王显,杨大柳,冯亚明. 稻虾种养模式对土壤肥力的影响. 江苏农业科学. 2020(23): 245-249 .
    29. 杨飞翔,黄璜,陈灿,常培恩,欧林志. 稻鳖共作模式中的土壤养分动态变化及产量形成. 作物研究. 2019(05): 402-407 .
    30. 周晶,黄璜,陈灿,周天送,隆斌庆,杨飞翔,王忍,吕广动,伍佳. 稻螺生态种养模式效益分析及其发展前景. 作物研究. 2019(05): 437-442 .
    31. 宋宇,王鹏,韦月平. 不同共作模式的稻田土壤细菌群落结构分析. 东北农业科学. 2019(04): 46-49 .

    Other cited types(24)

Catalog

    Article views (1451) PDF downloads (11) Cited by(55)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return