• ISSN 1000-0615
  • CN 31-1283/S
SU Guomao, QIN Zhendong, LI Jiabo, ZHOU Meng, MO Jinfeng, ZHANG Kai, LIANG Rishen, WU Zaohe, ZHAO Lijuan, LIN Li. Cloning, expression, antibody preparation and tissue distribution of tilapia lake virus nucleoprotein[J]. Journal of fisheries of china, 2020, 44(2): 276-288. DOI: 10.11964/jfc.20190211657
Citation: SU Guomao, QIN Zhendong, LI Jiabo, ZHOU Meng, MO Jinfeng, ZHANG Kai, LIANG Rishen, WU Zaohe, ZHAO Lijuan, LIN Li. Cloning, expression, antibody preparation and tissue distribution of tilapia lake virus nucleoprotein[J]. Journal of fisheries of china, 2020, 44(2): 276-288. DOI: 10.11964/jfc.20190211657

Cloning, expression, antibody preparation and tissue distribution of tilapia lake virus nucleoprotein

Funds: National Natural Science Foundation(31872606, 31572657, U1701233); Guangdong Provincial Ocean and Fisheries Bureau Fund(GDME-2018C006, D21822202, A201512C003, 2015-115); Guangdong Provincial Department of Education(KA170500G, TK222001G, KA18058B3, KA1819604)
More Information
  • Corresponding author:

    ZHAO Lijuan. E-mail: 406856929@qq.com

    LIN Li. E-mail: linli@zhku.edu.cn

  • Received Date: February 07, 2019
  • Revised Date: March 22, 2019
  • Available Online: July 01, 2019
  • Published Date: January 31, 2020
  • Recently, tilapia lake virus (TiLV) has been epidemic in many countries and posed a serious threat to Oreochromis spp. aquaculture industry. China has contributed the most amount of cultured Oreochromis spp. in the world. Up to date, there is no report of the TiLV epidemic in Oreochromis spp. in the mainland of China. However, since GIFT O. niloticus is one of the most cultured Oreochromis spp. species in the mainland, therefore it is necessary to characterize the features of the GIFT strain infected with TiLV. Taking the advantage of the TiLV which was kindly given as a gift by Dr. Sven Bergmann from Institute of Infectology, Friedrich Loffler Institute, we performed the infection of TiLV in the GIFT strain. The whole nucleotide sequences of the sixth genomic segment of TiLV from the experimental infected O. niloticus were determined. The length of the cDNA of the sixth genomic segment was1 044 bp containing an open reading frame of 954 bp encoding a protein with 317 amino acids with predicted molecular weight of 36.38 ku. There is 5′ end non-coding region of 19 bp and 3′end non-coding region of 972 bp. The sequences and phylogenetic tree analysis showed that the sixth genomic segment encoded TiLV nucleoprotein (NP). Subsequently, GST fusion NP was expressed in Escherichia coli and purified, and it was used to immunize New Zealand white rabbit (Albus lepus) according to the conventional method to prepare rabbit anti-NP polyclonal antibody. The results showed that the antibody titer obtained by ELISA was higher than 1:51 200, and the antibody could specifically recognize the NP protein from the tissues of O. niloticus infected with TiLV. Hematoxylin-eosin staining (H.E) was performed on different tissues of O. niloticus. The results showed that there were apparent pathological changes in the observed tissues, including hepatic necrosis and syncytium; vacuolization, necrosis and increased amount of hemosiderin in the spleen; necrosis and inclusion body in the head kidney; dissociation and shedding of the epithelial cells of the gill filament, small pieces adhered to each other; vacuoles of nerve cells in the brain tissue. Western blot and immunohistochemistry (IHC) were used to detect the expression of the NP protein in different tissues of O. niloticus infected with TiLV. The results showed that the highest amount of NP protein was expressed in the liver, followed by the brain, trunk kidney and head kidney. In order to elucidate the immune responses of O. niloticus to the TiLV infection, real-time quantitative PCR (qRT-PCR) was used to measure the mRNA expressions of TNF-α and TGF-β in the spleen and head kidney which are the two major immune tissues of fish. The results showed that during the early period of the infection (12-24 h post infection), the expression of both TNF-α and TGF-β was significantly inhibited by the viral infection, indicating that TiLV might inhibit these cytokines so as to facilitate its early replication in the host. The current study will shed new light on the pathogenesis of TiLV infection and will pave a new way for the development of effective prevention and control strategy against the epidemic of TiLV in O. niloticus.
  • [1]
    FAO. The state of world fisheries and aquaculture 2018-meeting the sustainable development goals[R]. Rome: FAO, 2018: 1-210.
    [2]
    Dinesh R, George M R, John K R, et al. TiLV - A worldwide menace to tilapiine aquaculture[J]. Journal of Entomology and Zoology Studies, 2017, 5(2): 605-607.
    [3]
    Bacharach E, Mishra N, Briese T, et al. Characterization of a novel orthomyxo-like virus causing mass die-offs of tilapia[J]. mBio, 2016, 7(2): e00431-16.
    [4]
    Cleasby N, Schwarz A M, Phillips M, et al. The socio-economic context for improving food security through land based aquaculture in Solomon Islands: a peri-urban case study[J]. Marine Policy, 2014, 45: 89-97. doi: 10.1016/j.marpol.2013.11.015
    [5]
    刘志刚, 卢迈新, 可小丽, 等. 尼罗罗非鱼肠道及养殖环境中菌群结构与链球菌病的相关性[J]. 水产学报, 2018, 42(10): 1635-1647. doi: 10.1111/jfd.12845

    Liu Z G, Lu M X, Ke X L, et al. Correlation between microflora structure in intestinal tract and aquaculture environment of tilapia (Oreochromis niloticus) and streptococcicosis[J]. Journal of Fisheries of China, 2018, 42(10): 1635-1647. doi: 10.1111/jfd.12845
    [6]
    甘桢, 王蓓, 鲁义善, 等. 罗非鱼免疫学研究进展[J]. 生物技术通报, 2014(11): 32-39.

    Gan Z, Wang B, Lu Y S, et al. Research progress on tilapia immunology[J]. Biotechnology Bulletin, 2014(11): 32-39(in Chinese).
    [7]
    Al-Hussinee L, Subramaniam K, Ahasan M S, et al. Complete genome sequence of a tilapia lake virus isolate obtained from Nile tilapia (Oreochromis niloticus)[J]. Genome Announcements, 2018, 6(26): e00580-18.
    [8]
    Eyngor M, Zamostiano R, Kembou Tsofack J E, et al. Identification of a novel RNA virus lethal to tilapia[J]. Journal of Clinical Microbiology, 2014, 52(12): 4137-4146. doi: 10.1128/JCM.00827-14
    [9]
    郭建红, 蔡颖, 吴松浩. 罗非鱼湖病毒研究进展[J]. 中国动物检疫, 2017, 34(8): 72-75.

    Guo J H, Cai Y, Wu S H. Research progress in tilapia lake virus[J]. China Animal Health Inspection, 2017, 34(8): 72-75(in Chinese).
    [10]
    Kembou Tsofack J E, Zamostiano R, Watted S, et al. Detection of tilapia lake virus in clinical samples by culturing and nested reverse transcription-PCR[J]. Journal of Clinical Microbiology, 2017, 55(3): 759-767. doi: 10.1128/JCM.01808-16
    [11]
    Dong H T, Ataguba G A, Khunrae P, et al. Evidence of TiLV infection in tilapia hatcheries from 2012 to 2017 reveals probable global spread of the disease[J]. Aquaculture, 2017, 479: 579-583. doi: 10.1016/j.aquaculture.2017.06.035
    [12]
    Jansen M D, Dong H T, Mohan C V. Tilapia lake virus: a threat to the global tilapia industry?[J]. Reviews in Aquaculture, 2018: 1-15. doi: 10.1111/raq.12254.
    [13]
    Ferguson H W, Kabuusu R, Beltran S, et al. Syncytial hepatitis of farmed tilapia, Oreochromis niloticus (L.): a case report[J]. Journal of Fish Diseases, 2014, 37(6): 583-589. doi: 10.1111/jfd.2014.37.issue-6
    [14]
    Dong H T, Siriroob S, Meemetta W, et al. Emergence of tilapia lake virus in Thailand and an alternative semi-nested RT-PCR for detection[J]. Aquaculture, 2017, 476: 111-118. doi: 10.1016/j.aquaculture.2017.04.019
    [15]
    Fathi M, Dickson C, Dickson M, et al. Identification of tilapia lake virus in egypt in Nile tilapia affected by ‘summer mortality’ syndrome[J]. Aquaculture, 2017, 473: 430-432. doi: 10.1016/j.aquaculture.2017.03.014
    [16]
    Surachetpong W, Janetanakit T, Nonthabenjawan N, et al. Outbreaks of tilapia lake virus infection, Thailand, 2015-2016[J]. Emerging Infectious Diseases, 2017, 23(6): 1031-1033. doi: 10.3201/eid2306.161278
    [17]
    Del-Pozo J, Mishra N, Kabuusu R, et al. Syncytial hepatitis of tilapia (Oreochromis niloticus L.) is associated with orthomyxovirus-like virions in hepatocytes[J]. Veterinary Pathology, 2017, 54(1): 164-170. doi: 10.1177/0300985816658100
    [18]
    Amal M N A, Koh C B, Nurliyana M, et al. A case of natural co-infection of tilapia lake virus and Aeromonas veronii in a Malaysian red hybrid tilapia (Oreochromis niloticus × O. mossambicus) farm experiencing high mortality[J]. Aquaculture, 2017, 485: 12-16.
    [19]
    Waiyamitra P, Tattiyapong P, Sirikanchana K, et al. A TaqMan RT-qPCR assay for tilapia lake virus (TiLV) detection in tilapia[J]. Aquaculture, 2018, 497: 184-188. doi: 10.1016/j.aquaculture.2018.07.060
    [20]
    Jansen M D, Mohan C V. Tilapia lake virus (TiLV): literature review[R]. Working Paper: FISH-2017-04. Penang, Malaysia: CGIAR Research Program on Fish Agri-Food Systems, 2017.
    [21]
    农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2018中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2018.

    Fisheries and Fisheries Administration of the Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. China Fishery Statistical Yearbook 2018[M]. Beijing: China Agriculture Press, 2018 (in Chinese).
    [22]
    王世表, 宋怿, 黄磊. 中国罗非鱼产业现状、存在问题和发展对策[J]. 中国渔业质量与标准, 2016, 6(5): 27-31.

    Wang S B, Song Y, Huang L. The status, problems and development countermeasures of Chinese tilapia industry[J]. China Fishery Quality and Standards, 2016, 6(5): 27-31(in Chinese).
    [23]
    Liamnimitr P, Thammatorn W, U-Thoomporn S, et al. Non-lethal sampling for tilapia lake virus detection by qRT-PCR and cell culture[J]. Aquaculture, 2018, 486: 75-80. doi: 10.1016/j.aquaculture.2017.12.015
    [24]
    Mugimba K K, Chengula A A, Wamala S, et al. Detection of tilapia lake virus (TiLV) infection by PCR in farmed and wild Nile tilapia (Oreochromis niloticus) from Lake Victoria[J]. Journal of Fish Diseases, 2018, 41(8): 1181-1189. doi: 10.1111/jfd.2018.41.issue-8
    [25]
    Swaminathan Thangaraj R, Ravi C, Kumar R, et al. Derivation of two tilapia (Oreochromis niloticus) cell lines for efficient propagation of tilapia lake virus (TiLV)[J]. Aquaculture, 2018, 492: 206-214. doi: 10.1016/j.aquaculture.2018.04.012
    [26]
    崔振波, 刘莉莉. 简析包涵体纯化处理要点[J]. 现代农业科学, 2009, 16(5): 19-30.

    Cui Z B, Liu L L. Analysis of purified inclusion bodies to deal with the main points[J]. Modern Agricultural Sciences, 2009, 16(5): 19-30(in Chinese).
    [27]
    Tattiyapong P, Dachavichitlead W, Surachetpong W. Experimental infection of tilapia lake virus (TiLV) in Nile tilapia (Oreochromis niloticus) and red tilapia (Oreochromis spp.)[J]. Veterinary Microbiology, 2017, 207: 170-177. doi: 10.1016/j.vetmic.2017.06.014
    [28]
    Portela A, Digard P. The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication[J]. Journal of General Virology, 2002, 83: 723-734. doi: 10.1099/0022-1317-83-4-723
    [29]
    Jariwalla R J, Roomi M W, Gangapurkar B, et al. Suppression of influenza a virus nuclear antigen production and neuraminidase activity by a nutrient mixture containing ascorbic acid, green tea extract and amino acids[J]. BioFactors, 2007, 31(1): 1-15. doi: 10.1002/biof.v31:1
    [30]
    Rocha E, Monteiro R A F, Pereira C A. Liver of the brown trout, Salmo trutta (Teleostei, Salmonidae): a stereological study at light and electron microscopic levels[J]. The Anatomical Record, 1997, 247(3): 317-328. doi: 10.1002/(ISSN)1097-0185
    [31]
    Senapin S, Shyam K U, Meemetta W, et al. Inapparent infection cases of tilapia lake virus (TiLV) in farmed tilapia[J]. Aquaculture, 2018, 487: 51-55. doi: 10.1016/j.aquaculture.2018.01.007
    [32]
    Reda R M, Mahmoud R, Selim K M, et al. Effects of dietary acidifiers on growth, hematology, immune response and disease resistance of Nile tilapia, Oreochromis niloticus[J]. Fish & Shellfish Immunology, 2016, 50: 255-262.
    [33]
    Zhan X L, Ma T Y, Wu J Y, et al. Cloning and primary immunological study of TGF-β1 and its receptors TβR I /TβR II in tilapia(Oreochromis niloticus)[J]. Developmental & Comparative Immunology, 2015, 51(1): 134-140.
    [34]
    Maehr T, Costa M M, Vecino J L G, et al. Transforming growth factor-β1b: a second TGF-β1 paralogue in the rainbow trout (Oncorhynchus mykiss) that has a lower constitutive expression but is more responsive to immune stimulation[J]. Fish & Shellfish Immunology, 2013, 34(2): 420-432.
    [35]
    Jantrakajorn S, Wongtavatchai J. Francisella infection in cultured tilapia in thailand and the inflammatory cytokine response[J]. Journal of Aquatic Animal Health, 2016, 28(2): 97-106. doi: 10.1080/08997659.2015.1135198
  • Related Articles

    [1]QIN Zhendong, ZHAN Fanbin, LI Yanan, SHI Fei, YANG Minxuan, LU Zhijie, LI Jun, LIN Li. Hemoglobin stimulate inflammatory cytokine expression in grass carp (Ctenopharyngodon idella) head-kidney macrophages[J]. Journal of fisheries of china, 2023, 47(3): 039415. DOI: 10.11964/jfc.20210813012
    [2]WANG Zixuan, JIA Zhao, WU Kaizheng, ZHU Xiaozhen, WANG Junya, FENG Hao, ZOU Jun. Expression of recombinant proteins and preparation of monoclonal antibodies for IFNa and IFNd in grass carp (Ctenopharyngodon idella)[J]. Journal of fisheries of china, 2022, 46(11): 2053-2065. DOI: 10.11964/jfc.20210813038
    [3]SU Hang, XIAO Tiaoyi, XU Baohong, LIU Qiaolin, LÜ Ligang, LIU Yi. Preparation and expression characteristics of polyclonal antibodies against C5a, C5aR and FⅡ in grass carp (Ctenopharyngodon idella)[J]. Journal of fisheries of china, 2022, 46(5): 785-796. DOI: 10.11964/jfc.20211113169
    [4]WU Yafang, HUANG Wenshu, DUAN Mingzhu, LI Wenxing, XIONG Jing, LIANG Ying, HUANG Bei. Characterization and expression analysis of MIF gene from Anguilla japonica[J]. Journal of fisheries of china, 2020, 44(9): 1549-1560. DOI: 10.11964/jfc.20200512271
    [5]YE Hanmei, WEI Xiaolei, TAN Xiaoying. Prokaryotic protein expression of suppressor of cytokine signaling 1 of yellow catfish (Pelteobagrus fulvidraco) and preparation of their polyclonal antibodies[J]. Journal of fisheries of china, 2020, 44(4): 523-527. DOI: 10.11964/jfc.20190611851
    [6]LI Jiabo, QIN Zhendong, ZHAO Lijuan, LIU Zhigang, KE Xiaoli, WU Zaohe, LIU Xiaoling, LU Maixin, LIN Li. Infection of tilapia lake virus in GIFT Oreochromis niloticus and E-11 cell[J]. Journal of fisheries of china, 2020, 44(1): 142-155. DOI: 10.11964/jfc.20190111649
    [7]YU Lin, LÜ Liqun, WANG Hao. Preparation and characterization of polyclonal antibody againstCyprinid herpesvirus 2 ORF121[J]. Journal of fisheries of china, 2019, 43(6): 1463-1471. DOI: 10.11964/jfc.20180911458
    [8]FENG Junchang, CHANG Xulu, ZHU Zhenxiang, GUO Xiangrui, ZHAO Yanjing, LIU Huifen, ZHANG Jianxin, NIE Guoxing. Preparation and detection of cytokines polyclonal antibodies of Cyprinus carpio[J]. Journal of fisheries of china, 2018, 42(10): 1615-1625. DOI: 10.11964/jfc.20171010998
    [9]DU Xiaolin, WANG Lan, SUN Min. Prokaryotic expression, antibody preparation and immunological identification of VASA protein in the freshwater crab (Sinopotamon henanense)[J]. Journal of fisheries of china, 2018, 42(8): 1181-1188. DOI: 10.11964/jfc.20170810926
    [10]ZHANG Haiqiang, SHAO Ling. Recombinant expression and polyclonal antibody preparation of the nucleoprotein, phosphoprotein and matrix protein of spring viremia of carp virus[J]. Journal of fisheries of china, 2017, 41(12): 1919-1927. DOI: 10.11964/jfc.20170110679
  • Cited by

    Periodical cited type(4)

    1. 田丁,蒋飞,陈春秀,李珂珂,卞柄杰,吴志新,陈孝煊. 草鱼CD8α和CD207的表达及抗细菌免疫的功能研究. 水生生物学报. 2023(04): 609-616 .
    2. 李亚男,高峰,陈宗馥,李世娇,林蠡. 罗非鱼湖病毒病及其检测技术研究进展. 水产养殖. 2022(08): 27-34 .
    3. 陈守峰,杨汝晴,陈玉磊,孙乐常,张凌晶,刘光明,曹敏杰. 皱纹盘鲍脯氨酰内肽酶的分离纯化及性质. 水产学报. 2022(12): 2432-2442 . 本站查看
    4. 沈海洋,卢志杰,秦真东,赵丽娟,李亚男,刘春,杨光,叶成凯,潘淦,林蠡. 谷氨酰胺对斜带石斑鱼GF-1细胞中C-Myc蛋白的表达与神经坏死病毒复制的影响. 水产学报. 2020(09): 1385-1396 . 本站查看

    Other cited types(1)

Catalog

    Article views (8310) PDF downloads (63) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return