Processing math: 100%
  • ISSN 1000-0615
  • CN 31-1283/S
YU Jixin, LI Wei, LIU Jiashou, XIONG Fei, YUAN Jing, ZHANG Tanglin. Effects of integrated rice-crayfish co-culture on soil fertility and metal element content[J]. Journal of fisheries of china, 2021, 45(3): 453-461. DOI: 10.11964/jfc.20190711895
Citation: YU Jixin, LI Wei, LIU Jiashou, XIONG Fei, YUAN Jing, ZHANG Tanglin. Effects of integrated rice-crayfish co-culture on soil fertility and metal element content[J]. Journal of fisheries of china, 2021, 45(3): 453-461. DOI: 10.11964/jfc.20190711895

Effects of integrated rice-crayfish co-culture on soil fertility and metal element content

More Information
  • Corresponding author:

    ZHANG Tanglin. E-mail: tlzhang@ihb.ac.cn

  • Received Date: July 29, 2019
  • Revised Date: October 06, 2019
  • Available Online: December 28, 2020
  • Published Date: March 01, 2021
  • The integrated rice-field aquaculture (IRFA) has been practiced successfully for 2000 years in China. The integrated rice-crayfish (Procambarus clarkii) co-culture (IRCC) has contributed more than 50% of the yield of IRFC, currently. Thus it is necessary to conduct researches on the IRCC, including its’ environmental impacts. As commercial feed feeding is very popular in IRCC practice, one of the potential environmental problems is the effects of feeding on the water and soil quality. Some previous studies have indicated that most nitrogen and phosphorus in the feed deposit in soil of crustacean aquaculture system. While it is not clear whether IRCC can increase nitrogen and phosphorus in soil, even some researches have been done. And it’s also not clear the effects of IRCC on the metal element contents in soil. The purpose of this study was to evaluate the impacts of IRCC in soil fertility (nitrogen, phosphorus and organic matter contents), and metal element contents on soil. Six physicochemical indicators and 11 metal elements contents of three layers of soil (0-10 cm, 10-20 cm and 20-30 cm) of the trench (TRC) and paddy (PRC) of IRCC, and rice monoculture fields (RM, as control) in Qianjiang City, Hubei Province, China, were measured, and the culture ages of the two modes were both 5 years. Contents of soil organic matter (SOM) and available phosphorus (AP) were measured by potassium dichromate heating oxidation-volumetrics, and NaHCO3 extraction, ammonium molybdate-tartaric emetic-ascrbic acid colorimetry method, respectively. Contents of total nitrogen (TN), ammonia nitrogen (NH+4-N), nitrate (NO3-N) and total phosphorus (TP) were measured by flow injection analysis, and contents of Cr, Cu, Cd, Pb, Zn, Ni, As, Fe, Mg, Ca and Mn were measured by microwave digestion-inductively coupled plasma-mass spectrometry. The contents of Cr, Cd, Pb, Zn, Ni, As and Cu were then evaluated according to the risk screening values for soil contamination of agricultural land in <GB15618—2018>. The results showed that the TN, $$AP and TP content of all layers exhibited a trend of PRC > RM > TRC, while SOM (excepting 20-30 cm layer) and NH4+-N of RM > PRC > TRC and NO3-N of TRC > PRC > RM. The content of Cu, As, Mg and Mn of all soil layers showed a trend of TRC > PRC > RM, while Cd, Pb, Fe and Ca on the contrary, and less significant differences were noted among TRC, PRC and RM for Cr, Zn or Ni, excepting for 0-10 cm longer. According to the risk screening values for soil contamination of agricultural land in <GB15618—2018>, Cr, Cd, Pb, Zn, Ni and As contents were up to standard, while Cu content was generally out of the limits, with over-limit ratios of 14%-46%. The results indicate that integrated rice-crayfish co-culture could increase nitrogen and phosphorus contents in the paddy soil, while decrease those in the trench soil, and SOM content.
  • [1]
    倪达书. 稻田养鱼[J]. 淡水渔业, 1985(1): 28-31.

    Ni D S. Fish culture in rice field[J]. Freshwater Fisheries, 1985(1): 28-31(in Chinese).
    [2]
    Xie J, Wu X, Tang J J, et al. Conservation of traditional rice varieties in a globally important agricultural heritage system (GIAHS): Rice-fish co-culture[J]. Agricultural Sciences in China, 2011, 10(5): 754-761.
    [3]
    唐建军, 李巍, 吕修涛, 等. 中国稻渔综合种养产业的发展现状与若干思考[J]. 中国稻米, 2020, 26(5): 1-10. doi: 10.3969/j.issn.1006-8082.2020.05.001

    Tang J J, Li W, Lv X T, et al. Development status and rethinking of the integrated rice-fish system in China[J]. China Rice, 2020, 26(5): 1-10(in Chinese). doi: 10.3969/j.issn.1006-8082.2020.05.001
    [4]
    全国水产技术推广总站, 中国水产学会. 中国小龙虾产业发展报告(2020)[J]. 中国水产, 2020(7): 8-17.

    National Fishery Technical Extension Center of China, China Society of Fisheries. Report on crayfish industry development in China (2020)[J]. China Fisheries, 2020(7): 8-17(in Chinese).
    [5]
    Funge-Smith S J, Briggs M R P. Nutrient budgets in intensive shrimp ponds: Implications for sustainability[J]. Aquaculture, 1998, 164(1-4): 117-133.
    [6]
    Islam M S, Sarker M J, Yamamoto T, et al. Water and sediment quality, partial mass budget and effluent N loading in coastal brackishwater shrimp farms in Bangladesh[J]. Marine Pollution Bulletin, 2004, 48(5-6): 471-485. doi: 10.1016/j.marpolbul.2003.08.025
    [7]
    齐振雄, 李德尚, 张曼平, 等. 对虾养殖池塘氮磷收支的实验研究[J]. 水产学报, 1998, 22(2): 124-128.

    Qi Z X, Li D S, Zhang M P, et al. Experimental studies on nitrogen and phosphorus budgets of shrimp culture pond[J]. Journal of Fisheries of China, 1998, 22(2): 124-128(in Chinese).
    [8]
    佀国涵, 袁家富, 彭成林, 等. 稻虾共作模式氮和磷循环特征及平衡状况[J]. 中国生态农业学报, 2019, 27(9): 1309-1318.

    Si G H, Yuan J F, Peng C L, et al. Nitrogen and phosphorus cycling characteristics and balance of the integrated rice-crayfish system[J]. Chinese Journal of Eco-Agriculture, 2019, 27(9): 1309-1318(in Chinese).
    [9]
    曹凑贵, 江洋, 汪金平, 等. 稻虾共作模式的“双刃性”及可持续发展策略[J]. 中国生态农业学报, 2017, 25(9): 1245-1253.

    Cao C G, Jiang Y, Wang J P, et al. “Dual character” of rice-crayfish culture and strategies for its sustainable development[J]. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1245-1253(in Chinese).
    [10]
    Li Q M, Xu L, Xu L J, et al. Influence of consecutive integrated rice-crayfish culture on phosphorus fertility of paddy soils[J]. Land Degradation & Development, 2018, 29(10): 3413-3422.
    [11]
    Si G H, Peng C L, Yuan J F, et al. Changes in soil microbial community composition and organic carbon fractions in an integrated rice-crayfish farming system in subtropical China[J]. Scientific Reports, 2017, 7: 2856. doi: 10.1038/s41598-017-02984-7
    [12]
    吴本丽, 陈贵生, 赵慧敏, 等. 巢湖地区稻虾共作模式对稻田土壤肥力的影响[J]. 安徽农业大学学报, 2018, 45(1): 96-100.

    Wu B L, Chen G S, Zhao H M, et al. Effects of the integrated rice-crayfish mode on soil fertility in Chaohu Lake region[J]. Journal of Anhui Agricultural University, 2018, 45(1): 96-100(in Chinese).
    [13]
    蔡晨, 李谷, 朱建强, 等. 稻虾轮作模式下江汉平原土壤理化性状特征研究[J]. 土壤学报, 2019, 56(1): 217-226.

    Cai C, Li G, Zhu J Q, et al. Effects of rice-crawfish rotation on soil physicochemical properties in Jianghan Plain[J]. Acta Pedologica Sinica, 2019, 56(1): 217-226(in Chinese).
    [14]
    管勤壮, 成永旭, 李聪, 等. 稻虾共作对土壤有机碳的影响及其与土壤性状的关系[J]. 浙江农业学报, 2019, 31(1): 113-120.

    Guan Q Z, Cheng Y X, Li C, et al. Changes of soil organic carbon and relationships with soil properties in rice-crayfish coculture system[J]. Acta Agriculturae Zhejiangensis, 2019, 31(1): 113-120(in Chinese).
    [15]
    佀国涵, 彭成林, 徐祥玉, 等. 稻-虾共作模式对涝渍稻田土壤微生物群落多样性及土壤肥力的影响[J]. 土壤, 2016, 48(3): 503-509. doi: 10.3969/j.issn.1004-1524.2019.01.15

    Si G H, Peng C L, Xu X Y, et al. Effects of rice-crayfish integrated mode on soil microbial functional diversity and fertility in waterlogged paddy field[J]. Soil, 2016, 48(3): 503-509(in Chinese). doi: 10.3969/j.issn.1004-1524.2019.01.15
    [16]
    Yu J X, Ren Y, Xu T, et al. Physicochemical water quality parameters in typical rice-crayfish integrated systems (RCIS) in China[J]. International Journal of Agricultural & Biological Engineering, 2018, 11(3): 54-60.
    [17]
    中华人民共和国生态环境部. GB 15618—2018土壤环境质量 农用地土壤污染风险管控标准(试行)[S]. 北京: 中国环境科学出版社, 2018.

    Ministry of Ecology and Environment of the People’s Republic of China. GB 15618—2018 Soil Environmental quality Risk Control Standard for Soil Contamination of Agricultural Land[S]. Beijing: China Environmental Science Press, 2018 (in Chinese).
    [18]
    喻记新, 向贤芬, 李为, 等. 虾稻综合种养系统浮游动物群落结构及其与环境因子的关系[J]. 生物资源, 2020, 42(3): 279-286.

    Yu J X, Xiang X F, Li W, et al. Community structure of zooplankton and its relationship with environmental factors in integrated crayfish-rice co-culture system[J]. Biotic Resources, 2020, 42(3): 279-286(in Chinese).
    [19]
    汪清, 王武, 马旭洲, 等. 稻蟹共作对土壤理化性质的影响[J]. 湖北农业科学, 2011, 50(19): 3948-3952. doi: 10.3969/j.issn.0439-8114.2011.19.016

    Wang Q, Wang W, Ma X Z, et al. The effects of integrated rice-crab production on soil physical and chemical properties[J]. Hubei Agricultural Sciences, 2011, 50(19): 3948-3952(in Chinese). doi: 10.3969/j.issn.0439-8114.2011.19.016
    [20]
    Angeler D G, Sanchez-Carrillo S, Garcia G, et al. The influence of Procambarus clarkii (Cambaridae, Decapoda) on water quality and sediment characteristics in a Spanish floodplain wetland[J]. Hydrobiologia, 2001, 464(1): 89-98.
    [21]
    Sun G, Fang Y, Dong G, et al. The effects of Misgurnus anguillicaudatus bioturbation on the vertical distribution of sediment particles in paddy field[J]. Agricultural Science & Technology, 2008, 9(6): 18-20, 54.
    [22]
    邝雪梅, 刘小燕, 余建波, 等. 稻-金鱼共栖生态系统土壤理化性状研究[J]. 淡水渔业, 2005, 35(3): 33-35. doi: 10.3969/j.issn.1000-6907.2005.03.009

    Kuang X M, Liu X Y, Yu J B, et al. A study on physicochemical property in soil of paddy rice and goldfish commensalisms system[J]. Freshwater fisheries, 2005, 35(3): 33-35(in Chinese). doi: 10.3969/j.issn.1000-6907.2005.03.009
    [23]
    高洪生. 北方寒地稻田养鱼对农田生态环境的影响初报[J]. 中国农学通报, 2006, 22(7): 470-472. doi: 10.3969/j.issn.1000-6850.2006.07.120

    Gao H S. Preliminary report of the influence of the rice field fish culture to the farmland ecology environment in north cold area[J]. Chinese Agricultural Science Bulletin, 2006, 22(7): 470-472(in Chinese). doi: 10.3969/j.issn.1000-6850.2006.07.120
    [24]
    Cai C F, Gu X H, Huang H Z, et al. Water quality, nutrient budget, and pollutant loads in Chinese mitten crab (Eriocheir sinensis) farms around East Taihu Lake[J]. Chinese Journal of Oceanology and Limnology, 2012, 30(1): 29-36.
    [25]
    Maucieri C, Salvato M, Borin M. Vegetation contribution on phosphorus removal in constructed wetlands[J]. Ecological Engineering, 2020, 152: 105853.
    [26]
    柏雪, 原泽鸿, 王建萍, 等. 四川省常用能量饲料和蛋白质饲料中重金属分布研究[J]. 动物营养学报, 2016, 28(9): 2847-2860. doi: 10.3969/j.issn.1006-267x.2016.09.024

    Bai X, Yuan Z H, Wang J P, et al. Investigation on heavy metal distribution in energy feedstuffs and protein feedstuffs of Sichuan Province[J]. Chinese Journal of Animal Nutrition, 2016, 28(9): 2847-2860(in Chinese). doi: 10.3969/j.issn.1006-267x.2016.09.024
    [27]
    王卫星, 曹淑萍, 李攻科, 等. 常用化肥重金属元素含量分析评价及其对土壤环境的影响[J]. 天津农业科学, 2017, 23(4): 19-22. doi: 10.3969/j.issn.1006-6500.2017.04.005

    Wang W X, Cao S P, Li G K, et al. Analysis and evaluation of heavy metal elements in common fertilizers and their effects on soil environment[J]. Tianjin Agricultural Sciences, 2017, 23(4): 19-22(in Chinese). doi: 10.3969/j.issn.1006-6500.2017.04.005
    [28]
    杨旭, 余垚, 李花粉, 等. 我国与欧美化肥重金属限量标准的比较和启示[J]. 植物营养与肥料学报, 2016, 2019, 25(1): 149-156.

    Yang X, Yu Y, Li H F, et al. Comparison of heavy metal limits for chemical fertilizers in China, EU and US and enlightenments[J]. Journal of Plant Nutrition and Fertilizers, 2016, 2019, 25(1): 149-156(in Chinese).
    [29]
    张帆, 李海露, 程凯凯. “稻鸭共生”生态系统重金属镉的转化、迁移及循环特征[J]. 中国生态农业学报, 2016, 24(9): 1206-1213.

    Zhang F, Li H L, Cheng K K. Characteristics of heavy metal (cadmium) transformation, migration and cycling in rice-duck mutual ecosystem[J]. Chinese Journal of Eco-Agriculture, 2016, 24(9): 1206-1213(in Chinese).
    [30]
    魏朝辉, 艾桃山, 郑程鹏, 等. 36种药物对青苔的抑杀作用[J]. 淡水渔业, 2015(2): 79-84. doi: 10.3969/j.issn.1000-6907.2015.02.014

    Wei Z H, Ai T S, Zheng C P, et al. Studies on inhibiting effects of 36 kinds of drugs on moss[J]. Freshwater fisheries, 2015(2): 79-84(in Chinese). doi: 10.3969/j.issn.1000-6907.2015.02.014
    [31]
    Xiong B, Xu T, Li R P, et al. Heavy metal accumulation and health risk assessment of crayfish collected from cultivated and uncultivated ponds in the Middle Reach of Yangtze River[J]. Science of the Total Environment, 2020, 739: 139963. doi: 10.1016/j.scitotenv.2020.139963
  • Cited by

    Periodical cited type(12)

    1. 王凯,潘凌洁,徐志豪,李佳丹,张弦,詹柴. 水稻红螯螯虾综合种养模式对土壤肥力的影响. 安徽农业科学. 2025(01): 94-97 .
    2. 杨军,杨婷,马林杰,徐荣,王守红,张家宏,寇祥明. 稻虾综合种养对稻田土壤环境影响的研究进展. 贵州农业科学. 2025(02): 126-133 .
    3. 虞朝洪,胡冰,刘星星,倪才英,杜春朝,简敏菲. 不同肥料与稻鳖共作对土壤性质及镉形态转化的影响. 江西师范大学学报(自然科学版). 2024(02): 167-174 .
    4. 王凯,潘凌洁,徐志豪,李佳丹,张弦,詹柴. 水稻—红螯螯虾种养模式的经济效益分析. 江西农业学报. 2024(03): 81-86 .
    5. 窦志,张耀元,郭威,陆静雯,徐强,汪本福,高辉. 稻渔综合种养对土壤和水稻影响的研究进展. 华南农业大学学报. 2024(06): 836-845 .
    6. 许元钊,宋庆洋,王辉,易建华,毕永红,米武娟,宋高飞. 稻虾综合种养对土壤肥力及微生物群落的影响. 水生生物学报. 2024(12): 2018-2028 .
    7. 陆静雯,郭威,张耀元,杜跃辰,吴慧扬,徐强,窦志,高辉. 稻虾综合种养模式下水稻生产的优势、问题和对策. 扬州大学学报(农业与生命科学版). 2024(06): 11-19+27 .
    8. 廖家旺,宫辉. 稻虾共作模式优质粳稻绿色免翻耕种植技术. 农家参谋. 2023(06): 47-49 .
    9. 韩科峰,陈开俊,马庆旭,姜春,许玉君,怀燕,吴良欢. 钙镁肥对水稻和小龙虾产量、品质及土壤养分状况的影响. 土壤通报. 2023(02): 346-351 .
    10. 刘平平,龚彦超,任丽平. 稻田生态种养模式对土壤生态环境的影响研究进展. 环境保护与循环经济. 2023(04): 51-53 .
    11. 梁玉刚,匡炜,旷娜,赵杨,戴力,胡文彬,罗先富,方宝华,赵正洪. 稻田养小龙虾的研究进展、存在问题及对策建议. 作物研究. 2023(04): 425-434 .
    12. 刘全,付新华,印文彪. “水稻+”综合种养模式研究进展. 安徽农业科学. 2022(13): 7-9 .

    Other cited types(8)

Catalog

    Article views (1196) PDF downloads (55) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return