Processing math: 100%
  • ISSN 1000-0615
  • CN 31-1283/S
GAO Yifei, WEI Chenzheng, LI Yihan, YIN Yanming, SONG Jing, LIU Ying. Pollutants removal by biological-electrooxidation in marine aquaculture recirculating water[J]. Journal of fisheries of china, 2020, 44(7): 1137-1146. DOI: 10.11964/jfc.20190911966
Citation: GAO Yifei, WEI Chenzheng, LI Yihan, YIN Yanming, SONG Jing, LIU Ying. Pollutants removal by biological-electrooxidation in marine aquaculture recirculating water[J]. Journal of fisheries of china, 2020, 44(7): 1137-1146. DOI: 10.11964/jfc.20190911966

Pollutants removal by biological-electrooxidation in marine aquaculture recirculating water

Funds: National Key R & D Program of China (2019YFD0900501); Marine and Fisheries Research Projects of Liaoning Province (201807); Department Funding for Scientific research of Liaoning Province (QL201906); Key Research and Development Program of Guangdong Province (2019B020215001)
More Information
  • Corresponding author:

    SONG Jing. E-mail: songjing@dlou.edu.cn

  • Received Date: September 15, 2019
  • Revised Date: February 03, 2020
  • Available Online: May 10, 2020
  • Published Date: June 30, 2020
  • In order to improve the efficiency and reduce the cost of marine aquaculture circulating water treatment, the combined process of biological aerated filter and electrochemical oxidation was developed in this study. The removal efficiencies of ammonia and nitrite at different anode potentials, influent ammonia and nitrite concentration were investigated. The interaction between microorganisms and the anode was studied and the energy consumption of electrochemical reaction was analyzed. When the hydraulic detention time is 45 min, at the anode potential of 1.4 V, and the ammonia and nitrite concentration is respectively 4.5 and 1.3 mg/L, the removal rate of ammonia by biological-electrooxidation system reached 88.8%, which was 7.6% higher than that of the control group. The concentration of ammonia and nitrite in effluent is respectively 0.5 and 0.9 mg/L, the removal rate of COD is 88.2%, which was 19.4% higher than the control group. The average energy consumption of electrochemical reaction is 0.040 kWh/m3. Microbial growth on electrode surface can promote the anodic oxidation process. The results of microbial function prediction show that the proportion of nitrification function is 0.03% in the experimental group and 0.07% in the control group. In conclusion, the biological-electrooxidation method shows good performance of removing pollutants in the marine aquaculture circulating water and great potential for developing high efficient marine aquaculture recirculating water treatment.
  • [1]
    刘鹰. 海水工业化循环水养殖技术研究进展[J]. 中国农业科技导报, 2011, 13(5): 50-53. doi: 10.3969/j.issn.1008-0864.2011.05.08

    Liu Y. Research progress on marine industrial recirculating aquaculture technology[J]. Journal of Agricultural Science and Technology, 2011, 13(5): 50-53(in Chinese). doi: 10.3969/j.issn.1008-0864.2011.05.08
    [2]
    沈加正. 海水循环水养殖系统中生物膜生长调控与水体循环优化研究[D]. 杭州: 浙江大学, 2016.

    Shen J Z. Study on the regulation of biofilm formation and the optimization of flow rates in marine recirculating aquaculture system[D]. Hangzhou: Zhejiang University, 2016(in Chinese).
    [3]
    徐建平. 几种环境因子对海水生物滤器硝化性能及亚硝酸盐积累的影响研究[D]. 青岛: 青岛理工大学, 2018.

    Xu J P. Effects of several environmental factors on nitrification and nitrite accumulation in seawater biofilter[D]. Qingdao: Qingdao University of Technology, 2018(in Chinese).
    [4]
    郭迪. 电化学技术去除海水养殖废水中氨氮的研究[D]. 杭州: 浙江大学, 2016.

    Guo D. Study on treatment of ammonia nitrogen in mariculture wastewater by electrochemical technology[D]. Hangzhou: Zhejiang University, 2016(in Chinese).
    [5]
    Gendel Y, Lahav O. A novel approach for ammonia removal from fresh-water recirculated aquaculture systems, comprising ion exchange and electrochemical regeneration[J]. Aquacultural Engineering, 2013, 52: 27-38. doi: 10.1016/j.aquaeng.2012.07.005
    [6]
    Mook W T, Chakrabarti M H, Aroua M K, et al. Removal of Total Ammonia Nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: a review[J]. Desalination, 2012, 285: 1-13. doi: 10.1016/j.desal.2011.09.029
    [7]
    宋协法, 边敏, 黄志涛, 等. 电化学氧化法在循环水养殖系统中去除氨氮和亚硝酸盐效果研究[J]. 中国海洋大学学报, 2016, 46(11): 127-135.

    Song X F, Bian M, Huang Z T, et al. Studies of the ammonia and nitrite removal by electrochemical oxidation in recirculating aquaculture system[J]. Periodical of Ocean University of China, 2016, 46(11): 127-135(in Chinese).
    [8]
    郭迪, 卢婵, 王玉珏. 海水养殖中氨氮的电化学氧化及残余氯和三卤甲烷的生成[J]. 水处理技术, 2017, 43(3): 64-67.

    Guo D, Lu C, Wang Y J. Ammonia removal from mariculture wastewater by electrochemical oxidation and the formation of chlorine residuals and trihalomethanes[J]. Technology of Water Treatment, 2017, 43(3): 64-67(in Chinese).
    [9]
    Radjenovic J, Sedlak D L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water[J]. Environmental Science & Technology, 2015, 49(19): 11292-11302.
    [10]
    Moreira F C, Soler J, Fonseca A, et al. Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate[J]. Water Research, 2015, 81: 375-387. doi: 10.1016/j.watres.2015.05.036
    [11]
    Feng Q, Song Y C, Bae B U. Influence of applied voltage on the performance of bioelectrochemical anaerobic digestion of sewage sludge and planktonic microbial communities at ambient temperature[J]. Bioresource Technology, 2016, 220: 500-508. doi: 10.1016/j.biortech.2016.08.085
    [12]
    Choi T S, Song Y C, Joicy A. Influence of conductive material on the bioelectrochemical removal of organic matter and nitrogen from low strength wastewater[J]. Bioresource Technology, 2018, 259: 407-413. doi: 10.1016/j.biortech.2018.03.049
    [13]
    陈蕾, 王郑. 电化学高级氧化与生化处理的联合工艺研究进展[J]. 应用化工, 2019, 48(4): 960-963. doi: 10.3969/j.issn.1671-3206.2019.04.051

    Chen L, Wang Z. Research progress in combined process of electrochemical advanced oxidation and biochemical treatment[J]. Applied Chemical Industry, 2019, 48(4): 960-963(in Chinese). doi: 10.3969/j.issn.1671-3206.2019.04.051
    [14]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 17378.4-2007海洋监测规范第4部分: 海水分析[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration. GB 17378.4-2007 The specification for marine monitoring-Part4: Seawater analysis[S]. Beijing: Standards Press of China, 2008.
    [15]
    Zhan G Q, Zhang L X, Tao Y, et al. Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems[J]. Electrochimica Acta, 2014, 135: 345-350. doi: 10.1016/j.electacta.2014.05.037
    [16]
    Xing Y Q, Lin J W. Application of electrochemical treatment for the effluent from marine recirculating aquaculture systems[J]. Procedia Environmental Sciences, 2011, 10: 2329-2335. doi: 10.1016/j.proenv.2011.09.363
    [17]
    陈金銮, 施汉昌, 徐丽丽, 等. pH值对氨氮电化学氧化产物与氧化途径的影响[J]. 环境科学, 2008, 29(8): 2277-2281. doi: 10.3321/j.issn:0250-3301.2008.08.032

    Chen J L, SHI H C, Xu L L, et al. Effect of pH for the electrochemical oxidation products and oxidation pathways of ammonia[J]. Environmental Sciences, 2008, 29(8): 2277-2281(in Chinese). doi: 10.3321/j.issn:0250-3301.2008.08.032
    [18]
    刘长发, 姚敬元, 袁瑗, 等. 循环海水养殖系统硝化滤器中氨氧化微生物分析[J]. 渔业现代化, 2012, 39(3): 1-6, 12. doi: 10.3969/j.issn.1007-9580.2012.03.001

    Liu C F, Yao J Y, Yuan Y, et al. Ammonia-oxidizing bacterial community composition in the nitrifying biofilter of recirculating aquaculture system[J]. Fishery Modernization, 2012, 39(3): 1-6, 12(in Chinese). doi: 10.3969/j.issn.1007-9580.2012.03.001
    [19]
    赵晴, 刘梦莹, 吕慧, 等. 耦合短程硝化反硝化的垃圾渗滤液厌氧氨氧化处理系统构建及微生物群落分析[J]. 环境科学, 2019, 40(9): 4195-4201.

    Zhao Q, Liu M Y, Lv H, et al. Setup and microbial community analysis of ANAMMOX system for landfill leachate treatment coupling partial nitrification-denitrification process[J]. Environmental Science, 2019, 40(9): 4195-4201(in Chinese).
    [20]
    汪瑶琪, 张敏, 姜滢, 等. 厌氧氨氧化启动过程及微生物群落结构特征[J]. 环境科学, 2017, 38(12): 5184-5191.

    Wang Y Q, Zhang M, Jiang Y, et al. Start-up and characteristics of the microbial community structure of ANAMMOX[J]. Environmental Science, 2017, 38(12): 5184-5191(in Chinese).
    [21]
    Brailo M, Schreier H J, McDonald R, et al. Bacterial community analysis of marine recirculating aquaculture system bioreactors for complete nitrogen removal established from a commercial inoculum[J]. Aquaculture, 2019, 503: 198-206. doi: 10.1016/j.aquaculture.2018.12.078
    [22]
    郑越. 功能生物电化学系统的微生物群落研究[D]. 长沙: 湖南大学, 2015.

    Zheng Y. Investigation on the microbial community of functional bioelectrochemical systems[D]. Changsha: Hunan University, 2015(in Chinese).
    [23]
    钟小娟. 电活性氨氧化生物膜的形成及影响因素研究[D]. 福州: 福建农林大学, 2018.

    Zhong X J. Study on formation and factors of electroactive ammonium oxidation biofilm[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018(in Chinese).
    [24]
    KapałKa A, Fierro S, Frontistis Z, et al. Electrochemical behaviour of ammonia ( NH+4 /NH3) on electrochemically grown anodic iridium oxide film (AIROF) electrode[J]. Electrochemistry Communications, 2009, 11(8): 1590-1592. doi: 10.1016/j.elecom.2009.06.003

Catalog

    Article views (1427) PDF downloads (25) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return