• ISSN 1000-0615
  • CN 31-1283/S
JIANG Tao, WANG Chengyou, DU Hao, ZHANG Shuhuan, LIU Hongbo, WEI Qiwei, YANG Jian. Investigation into the microstructure and microchemical characteristics of the hard tissues of Acipenser sinensis[J]. Journal of fisheries of china, 2021, 45(3): 424-432. DOI: 10.11964/jfc.20191012033
Citation: JIANG Tao, WANG Chengyou, DU Hao, ZHANG Shuhuan, LIU Hongbo, WEI Qiwei, YANG Jian. Investigation into the microstructure and microchemical characteristics of the hard tissues of Acipenser sinensis[J]. Journal of fisheries of china, 2021, 45(3): 424-432. DOI: 10.11964/jfc.20191012033

Investigation into the microstructure and microchemical characteristics of the hard tissues of Acipenser sinensis

Funds: Research Fund of China Three-Gorges Project Corporation (201603073)
More Information
  • Corresponding author:

    WEI Qiwei. E-mail: weiqw@yfi.ac.cn

    YANG Jian. E-mail: jiany@ffrc.cn

  • Received Date: October 28, 2019
  • Revised Date: June 14, 2020
  • Available Online: July 30, 2020
  • Published Date: March 01, 2021
  • Chinese sturgeon (Acipenser sinensis) is an endemic, endangered and protected anadromous fish in China. This fish has been listed as a Category I nationally protected species in China and a critically endangered (CR) species of the International Union for Conservation of Nature (IUCN). Due to the restrictions by several special reasons of this species, e.g., long lifespan, complex migratory process, and precarious resource situation, it is quite difficult to objectively reveal the features of life history, and characteristics of distribution, and dynamics of habitat use (e.g., spawning/nursery site) by some traditional methods. Consequently, introducing more new innovative approaches is needed to achieve new breakthrough on research of migratory ecology and conservation for this species. In the present study, microchemical characteristics of three kinds of hard tissues of A. sinensis (i.e., otolith, dorsal scute, and pectoral fin ray) were studied comparatively by electron probe microanalyses (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) with their microstructure. The results show that otoliths of A. sinensis are loose in structure and contain small sand-like microcrystalline vaterite spherulites with independent core areas. In constrast, the dorsal scute is a stratified tissue while the pectoral fin ray is a relatively compact and uniform tissue. Viewed from the microchemical results of the three hard tissues, the analytical accuracy across all samples was high for Mg, Ti, V, Mn, Cu, Zn, Co, Sr, Ba and Ca with RSD<10%. The z-Scores of habitat element ratios for Co/Ca, Sr/Ca and Ba/Ca in both pectoral fin ray (−0.97-2.16, −0.78-2.56, −0.96-2.41) and otolith (−1.7-0.74, −1.24-0.98, −1.09-1.09) are consistent, while those z-Scores in the dorsal scute (−1.95-2.32, −1.68-2.03, −1.62-2.68) are fluctuative due to its stratification. At the same time, the microchemical maps of Sr, Ca and Ba in these three hard tissues revealed that pectoral fin ray and dorsal scute were uniform color/concentration while different parts of otolith showed different colors/concentrations. Based on the aforementioned findings and we consider practical needs from no lethality, difficulty of sampling and sample preparation process, tissular microstructure composition, and environmental element bioaccumulation. In the present study, the microstructure and microchemical characteristics of three kinds of hard tissues of A. sinensis, i.e., otolith, dorsal scute, and pectoral fin ray, were studied comparatively. The present study suggested that the pectoral fin ray is the best hard tissue material for microchemical study for reconstructing the history of the migration and life cycle of A. sinensis.
  • [1]
    陈细华. 鲟形目鱼类生物学与资源现状[M]. 北京: 海洋出版社, 2007: 95-102.

    Chen X H. Biology and resources of Acipenseriformes fishes[M]. Beijing: China Ocean Press, 2007: 95-102 (in Chinese).
    [2]
    王鲁海, 黄真理, 任家盈, 等. 基于年龄结构的中华鲟资源量估算方法[J]. 水产学报, 2018, 42(8): 1263-1272.

    Wang L H, Huang Z L, Ren J Y, et al. An age-structured population model of the Chinese sturgeon (Aciperser sinensis)[J]. Journal of Fisheries of China, 2018, 42(8): 1263-1272(in Chinese).
    [3]
    杜浩, 危起伟, 张辉, 等. 三峡蓄水以来葛洲坝下中华鲟产卵场河床质特征变化[J]. 生态学报, 2015, 35(9): 3124-3131.

    Du H, Wei Q W, Zhang H, et al. Changes of bottom substrate characteristics in spawning ground of Chinese sturgeon downstream the Gezhouba Dam from impounding of three gorge reservoir[J]. Acta Ecologica Sinica, 2015, 35(9): 3124-3131(in Chinese).
    [4]
    吴金明, 王成友, 张书环, 等. 从连续到偶发: 中华鲟在葛洲坝下发生小规模自然繁殖[J]. 中国水产科学, 2017, 24(3): 425-431. doi: 10.3724/SP.J.1118.2017.17095

    Wu J M, Wang C Y, Zhang S H, et al. From continuous to occasional: small-scale natural reproduction of Chinese sturgeon occurred in the Gezhouba spawning ground, Yichang, China[J]. Journal of Fishery Sciences of China, 2017, 24(3): 425-431(in Chinese). doi: 10.3724/SP.J.1118.2017.17095
    [5]
    Zhuang P, Zhao F, Zhang T, et al. New evidence may support the persistence and adaptability of the near-extinct Chinese sturgeon[J]. Biological Conservation, 2016, 193: 66-69. doi: 10.1016/j.biocon.2015.11.006
    [6]
    Jiang T, Yang J, Lu M J, et al. Discovery of a spawning area for anadromous Coilia nasus Temminck et Schlegel, 1846 in Poyang Lake, China[J]. Journal of Applied Ichthyology, 2017, 33(2): 189-192. doi: 10.1111/jai.13293
    [7]
    Jiang T, Liu H B, Lu M J, et al. A possible connectivity among estuarine tapertail anchovy (Coilia nasus) populations in the Yangtze River, Yellow Sea, and Poyang Lake[J]. Estuaries and Coasts, 2016, 39(6): 1762-1768. doi: 10.1007/s12237-016-0107-z
    [8]
    Liu H B, Jiang T, Yang J. Unravelling habitat use of Coilia nasus from the Rokkaku River and Chikugo River estuaries of Japan by otolith strontium and calcium[J]. Acta Oceanologica Sinica, 2018, 37(6): 52-60. doi: 10.1007/s13131-018-1190-8
    [9]
    Walsh C T, Gillanders B M. Extrinsic factors affecting otolith chemistry-implications for interpreting migration patterns in a diadromous fish[J]. Environmental Biology of Fishes, 2018, 101(6): 905-916. doi: 10.1007/s10641-018-0746-y
    [10]
    Arai T, Miyazaki N. Otolith microstructure of the Russian sturgeon, Acipenser gueldenstadti[J]. Journal of the Marine Biological Association of the United Kingdom, 2002, 82(4): 679-680. doi: 10.1017/S0025315402006070
    [11]
    Muhlfeld C C, Marotz B, Thorrold S R, et al. Geochemical signatures in scales record stream of origin in westslope cutthroat trout[J]. Transactions of the American Fisheries Society, 2005, 134(4): 945-959. doi: 10.1577/T04-029.1
    [12]
    Allen P J, DeVries R J, Fox D A, et al. Trace element and strontium isotopic analysis of gulf sturgeon fin rays to assess habitat use[J]. Environmental Biology of Fishes, 2018, 101(3): 469-488. doi: 10.1007/s10641-018-0713-7
    [13]
    Allen P J, Hobbs J A, Cech Jr J J, et al. Using trace elements in pectoral fin rays to assess life history movements in sturgeon: estimating age at initial seawater entry in Klamath River green sturgeon[J]. Transactions of the American Fisheries Society, 2009, 138(2): 240-250. doi: 10.1577/T08-061.1
    [14]
    Tzadik O E, Peebles E B, Stallings C D. Life-history studies by non-lethal sampling: using microchemical constituents of fin rays as chronological recorders[J]. Journal of Fish Biology, 2017, 90(2): 611-625. doi: 10.1111/jfb.13156
    [15]
    陈婷婷, 姜涛, 李孟孟, 等. 长江南京江段长颌鲚生境履历的反演[J]. 水产学报, 2016, 40(6): 882-892.

    Chen T T, Jiang T, Li M M, et al. Inversion of habitat history for the long-jaw ecotype Coilia nasus collected from Nanjing section of the Yangtze River[J]. Journal of Fisheries of China, 2016, 40(6): 882-892(in Chinese).
    [16]
    Khumbanyiwa D D, Li M M, Jiang T, et al. Unraveling habitat use of Coilia nasus from Qiantang River of China by otolith microchemistry[J]. Regional Studies in Marine Science, 2018, 18: 122-128. doi: 10.1016/j.rsma.2018.02.001
    [17]
    Walrath R. Standard scores[M]//Goldstein S, Naglieri J A. Encyclopedia of Child Behavior and Development. Boston: Springer, 2011.
    [18]
    Miles N G, Butler G L, Diamond S L, et al. Combining otolith chemistry and telemetry to assess diadromous migration in pinkeye mullet, Trachystoma petardi (Actinopterygii, Mugiliformes)[J]. Hydrobiologia, 2018, 808(1): 265-281. doi: 10.1007/s10750-017-3430-x
    [19]
    Santana F M, Morize E, Labonne M, et al. Connectivity between the marine coast and estuary for white mullet (Mugil curema) in northeastern Brazil revealed by otolith Sr∶Ca ratio[J]. Estuarine, Coastal and Shelf Science, 2018, 215: 124-131. doi: 10.1016/j.ecss.2018.09.032
    [20]
    Arai T, Chino N. Opportunistic migration and habitat use of the giant mottled eel Anguilla marmorata (Teleostei: Elopomorpha)[J]. Scientific Reports, 2018, 8(1): 5666. doi: 10.1038/s41598-018-24011-z
    [21]
    Chino K, McCarthy T K, Arai T. Analysis of fluvial migration of the Irish pollan Coregonus autumnalis, using Sr∶Ca ratios of otolith[J]. Journal of Applied Animal Research, 2018, 46(1): 609-612. doi: 10.1080/09712119.2017.1369089
    [22]
    Xie S, Watanabe Y, Saruwatari T, et al. Growth and morphological development of sagittal otoliths of larval and early juvenile Trachurus japonicus[J]. Journal of Fish Biology, 2005, 66(6): 1704-1719. doi: 10.1111/j.0022-1112.2005.00717.x
    [23]
    Xie S G, Watanabe Y. Transport-determined early growth and development of jack mackerel Trachurus japonicus juveniles immigrating into Sagami Bay, Japan[J]. Marine and Freshwater Research, 2007, 58(11): 1048-1055. doi: 10.1071/MF06165
    [24]
    Altenritter M E, Kinnison M T, Zydlewski G B, et al. Assessing dorsal scute microchemistry for reconstruction of shortnose sturgeon life histories[J]. Environmental Biology of Fishes, 2015, 98(12): 2321-2335. doi: 10.1007/s10641-015-0438-9
    [25]
    Pracheil B M, Chakoumakos B C, Feygenson M, et al. Sturgeon and paddlefish (Acipenseridae) sagittal otoliths are composed of the calcium carbonate polymorphs vaterite and calcite[J]. Journal of Fish Biology, 2017, 90(2): 549-558. doi: 10.1111/jfb.13085
    [26]
    Phelps Q E, Whitledge G W, Tripp S J, et al. Identifying river of origin for age-0 Scaphirhynchus sturgeons in the Missouri and Mississippi rivers using fin ray microchemistry[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69(5): 930-941. doi: 10.1139/f2012-038
    [27]
    Clarke A D, Telmer K H, Shrimpton J M. Elemental analysis of otoliths, fin rays and scales: a comparison of bony structures to provide population and life-history information for the Arctic grayling (Thymallus arcticus)[J]. Ecology of Freshwater Fish, 2007, 16(3): 354-361. doi: 10.1111/j.1600-0633.2007.00232.x
    [28]
    Ma J, Zhuang P, Kynard B, et al. Morphological and osteological development during early ontogeny of Chinese sturgeon (Acipenser sinensis Gray, 1835)[J]. Journal of Applied Ichthyology, 2014, 30(6): 1212-1215. doi: 10.1111/jai.12585
    [29]
    Zhang X, Shimoda K, Ura A, et al. Developmental structure of the vertebral column, fins, scutes and scales in bester sturgeon, a hybrid of beluga Huso huso and sterlet Acipenser ruthenus[J]. Journal of Fish Biology, 2012, 81(6): 1985-2004. doi: 10.1111/j.1095-8649.2012.03451.x
    [30]
    Sellheim K, Willmes M, Hobbs J A, et al. Validating fin ray microchemistry as a tool to reconstruct the migratory history of white sturgeon[J]. Transactions of the American Fisheries Society, 2017, 146(5): 844-857. doi: 10.1080/00028487.2017.1320305
    [31]
    Phelps Q E, Hupfeld R N, Whitledge G W. Lake sturgeon Acipenser fulvescens and shovelnose sturgeon Scaphirhynchus platorynchus environmental life history revealed using pectoral fin-ray microchemistry: implications for interjurisdictional conservation through fishery closure zones[J]. Journal of Fish Biology, 2017, 90(2): 626-639. doi: 10.1111/jfb.13242
  • Cited by

    Periodical cited type(1)

    1. 肖百义,杨健,姜涛,刘洪波,陈修报. 基于耳石微化学特征的鄱阳湖刀鲚永修群体的关键栖息地识别. 湖泊科学. 2024(03): 870-880 .

    Other cited types(5)

Catalog

    Article views (1626) PDF downloads (39) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return