Citation: | JIANG Tao, WANG Chengyou, DU Hao, ZHANG Shuhuan, LIU Hongbo, WEI Qiwei, YANG Jian. Investigation into the microstructure and microchemical characteristics of the hard tissues of Acipenser sinensis[J]. Journal of fisheries of china, 2021, 45(3): 424-432. DOI: 10.11964/jfc.20191012033 |
[1] |
陈细华. 鲟形目鱼类生物学与资源现状[M]. 北京: 海洋出版社, 2007: 95-102.
Chen X H. Biology and resources of Acipenseriformes fishes[M]. Beijing: China Ocean Press, 2007: 95-102 (in Chinese).
|
[2] |
王鲁海, 黄真理, 任家盈, 等. 基于年龄结构的中华鲟资源量估算方法[J]. 水产学报, 2018, 42(8): 1263-1272.
Wang L H, Huang Z L, Ren J Y, et al. An age-structured population model of the Chinese sturgeon (Aciperser sinensis)[J]. Journal of Fisheries of China, 2018, 42(8): 1263-1272(in Chinese).
|
[3] |
杜浩, 危起伟, 张辉, 等. 三峡蓄水以来葛洲坝下中华鲟产卵场河床质特征变化[J]. 生态学报, 2015, 35(9): 3124-3131.
Du H, Wei Q W, Zhang H, et al. Changes of bottom substrate characteristics in spawning ground of Chinese sturgeon downstream the Gezhouba Dam from impounding of three gorge reservoir[J]. Acta Ecologica Sinica, 2015, 35(9): 3124-3131(in Chinese).
|
[4] |
吴金明, 王成友, 张书环, 等. 从连续到偶发: 中华鲟在葛洲坝下发生小规模自然繁殖[J]. 中国水产科学, 2017, 24(3): 425-431. doi: 10.3724/SP.J.1118.2017.17095
Wu J M, Wang C Y, Zhang S H, et al. From continuous to occasional: small-scale natural reproduction of Chinese sturgeon occurred in the Gezhouba spawning ground, Yichang, China[J]. Journal of Fishery Sciences of China, 2017, 24(3): 425-431(in Chinese). doi: 10.3724/SP.J.1118.2017.17095
|
[5] |
Zhuang P, Zhao F, Zhang T, et al. New evidence may support the persistence and adaptability of the near-extinct Chinese sturgeon[J]. Biological Conservation, 2016, 193: 66-69. doi: 10.1016/j.biocon.2015.11.006
|
[6] |
Jiang T, Yang J, Lu M J, et al. Discovery of a spawning area for anadromous Coilia nasus Temminck et Schlegel, 1846 in Poyang Lake, China[J]. Journal of Applied Ichthyology, 2017, 33(2): 189-192. doi: 10.1111/jai.13293
|
[7] |
Jiang T, Liu H B, Lu M J, et al. A possible connectivity among estuarine tapertail anchovy (Coilia nasus) populations in the Yangtze River, Yellow Sea, and Poyang Lake[J]. Estuaries and Coasts, 2016, 39(6): 1762-1768. doi: 10.1007/s12237-016-0107-z
|
[8] |
Liu H B, Jiang T, Yang J. Unravelling habitat use of Coilia nasus from the Rokkaku River and Chikugo River estuaries of Japan by otolith strontium and calcium[J]. Acta Oceanologica Sinica, 2018, 37(6): 52-60. doi: 10.1007/s13131-018-1190-8
|
[9] |
Walsh C T, Gillanders B M. Extrinsic factors affecting otolith chemistry-implications for interpreting migration patterns in a diadromous fish[J]. Environmental Biology of Fishes, 2018, 101(6): 905-916. doi: 10.1007/s10641-018-0746-y
|
[10] |
Arai T, Miyazaki N. Otolith microstructure of the Russian sturgeon, Acipenser gueldenstadti[J]. Journal of the Marine Biological Association of the United Kingdom, 2002, 82(4): 679-680. doi: 10.1017/S0025315402006070
|
[11] |
Muhlfeld C C, Marotz B, Thorrold S R, et al. Geochemical signatures in scales record stream of origin in westslope cutthroat trout[J]. Transactions of the American Fisheries Society, 2005, 134(4): 945-959. doi: 10.1577/T04-029.1
|
[12] |
Allen P J, DeVries R J, Fox D A, et al. Trace element and strontium isotopic analysis of gulf sturgeon fin rays to assess habitat use[J]. Environmental Biology of Fishes, 2018, 101(3): 469-488. doi: 10.1007/s10641-018-0713-7
|
[13] |
Allen P J, Hobbs J A, Cech Jr J J, et al. Using trace elements in pectoral fin rays to assess life history movements in sturgeon: estimating age at initial seawater entry in Klamath River green sturgeon[J]. Transactions of the American Fisheries Society, 2009, 138(2): 240-250. doi: 10.1577/T08-061.1
|
[14] |
Tzadik O E, Peebles E B, Stallings C D. Life-history studies by non-lethal sampling: using microchemical constituents of fin rays as chronological recorders[J]. Journal of Fish Biology, 2017, 90(2): 611-625. doi: 10.1111/jfb.13156
|
[15] |
陈婷婷, 姜涛, 李孟孟, 等. 长江南京江段长颌鲚生境履历的反演[J]. 水产学报, 2016, 40(6): 882-892.
Chen T T, Jiang T, Li M M, et al. Inversion of habitat history for the long-jaw ecotype Coilia nasus collected from Nanjing section of the Yangtze River[J]. Journal of Fisheries of China, 2016, 40(6): 882-892(in Chinese).
|
[16] |
Khumbanyiwa D D, Li M M, Jiang T, et al. Unraveling habitat use of Coilia nasus from Qiantang River of China by otolith microchemistry[J]. Regional Studies in Marine Science, 2018, 18: 122-128. doi: 10.1016/j.rsma.2018.02.001
|
[17] |
Walrath R. Standard scores[M]//Goldstein S, Naglieri J A. Encyclopedia of Child Behavior and Development. Boston: Springer, 2011.
|
[18] |
Miles N G, Butler G L, Diamond S L, et al. Combining otolith chemistry and telemetry to assess diadromous migration in pinkeye mullet, Trachystoma petardi (Actinopterygii, Mugiliformes)[J]. Hydrobiologia, 2018, 808(1): 265-281. doi: 10.1007/s10750-017-3430-x
|
[19] |
Santana F M, Morize E, Labonne M, et al. Connectivity between the marine coast and estuary for white mullet (Mugil curema) in northeastern Brazil revealed by otolith Sr∶Ca ratio[J]. Estuarine, Coastal and Shelf Science, 2018, 215: 124-131. doi: 10.1016/j.ecss.2018.09.032
|
[20] |
Arai T, Chino N. Opportunistic migration and habitat use of the giant mottled eel Anguilla marmorata (Teleostei: Elopomorpha)[J]. Scientific Reports, 2018, 8(1): 5666. doi: 10.1038/s41598-018-24011-z
|
[21] |
Chino K, McCarthy T K, Arai T. Analysis of fluvial migration of the Irish pollan Coregonus autumnalis, using Sr∶Ca ratios of otolith[J]. Journal of Applied Animal Research, 2018, 46(1): 609-612. doi: 10.1080/09712119.2017.1369089
|
[22] |
Xie S, Watanabe Y, Saruwatari T, et al. Growth and morphological development of sagittal otoliths of larval and early juvenile Trachurus japonicus[J]. Journal of Fish Biology, 2005, 66(6): 1704-1719. doi: 10.1111/j.0022-1112.2005.00717.x
|
[23] |
Xie S G, Watanabe Y. Transport-determined early growth and development of jack mackerel Trachurus japonicus juveniles immigrating into Sagami Bay, Japan[J]. Marine and Freshwater Research, 2007, 58(11): 1048-1055. doi: 10.1071/MF06165
|
[24] |
Altenritter M E, Kinnison M T, Zydlewski G B, et al. Assessing dorsal scute microchemistry for reconstruction of shortnose sturgeon life histories[J]. Environmental Biology of Fishes, 2015, 98(12): 2321-2335. doi: 10.1007/s10641-015-0438-9
|
[25] |
Pracheil B M, Chakoumakos B C, Feygenson M, et al. Sturgeon and paddlefish (Acipenseridae) sagittal otoliths are composed of the calcium carbonate polymorphs vaterite and calcite[J]. Journal of Fish Biology, 2017, 90(2): 549-558. doi: 10.1111/jfb.13085
|
[26] |
Phelps Q E, Whitledge G W, Tripp S J, et al. Identifying river of origin for age-0 Scaphirhynchus sturgeons in the Missouri and Mississippi rivers using fin ray microchemistry[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69(5): 930-941. doi: 10.1139/f2012-038
|
[27] |
Clarke A D, Telmer K H, Shrimpton J M. Elemental analysis of otoliths, fin rays and scales: a comparison of bony structures to provide population and life-history information for the Arctic grayling (Thymallus arcticus)[J]. Ecology of Freshwater Fish, 2007, 16(3): 354-361. doi: 10.1111/j.1600-0633.2007.00232.x
|
[28] |
Ma J, Zhuang P, Kynard B, et al. Morphological and osteological development during early ontogeny of Chinese sturgeon (Acipenser sinensis Gray, 1835)[J]. Journal of Applied Ichthyology, 2014, 30(6): 1212-1215. doi: 10.1111/jai.12585
|
[29] |
Zhang X, Shimoda K, Ura A, et al. Developmental structure of the vertebral column, fins, scutes and scales in bester sturgeon, a hybrid of beluga Huso huso and sterlet Acipenser ruthenus[J]. Journal of Fish Biology, 2012, 81(6): 1985-2004. doi: 10.1111/j.1095-8649.2012.03451.x
|
[30] |
Sellheim K, Willmes M, Hobbs J A, et al. Validating fin ray microchemistry as a tool to reconstruct the migratory history of white sturgeon[J]. Transactions of the American Fisheries Society, 2017, 146(5): 844-857. doi: 10.1080/00028487.2017.1320305
|
[31] |
Phelps Q E, Hupfeld R N, Whitledge G W. Lake sturgeon Acipenser fulvescens and shovelnose sturgeon Scaphirhynchus platorynchus environmental life history revealed using pectoral fin-ray microchemistry: implications for interjurisdictional conservation through fishery closure zones[J]. Journal of Fish Biology, 2017, 90(2): 626-639. doi: 10.1111/jfb.13242
|
1. |
肖百义,杨健,姜涛,刘洪波,陈修报. 基于耳石微化学特征的鄱阳湖刀鲚永修群体的关键栖息地识别. 湖泊科学. 2024(03): 870-880 .
![]() |