• ISSN 1000-0615
  • CN 31-1283/S
DONG Zhongdian, LI Xueyou, HUANG Chengqin, ZHANG Hairui, HUANG Shunkai, ZHANG Ning, GUO Yusong, WANG Zhongduo. Comparative transcriptome analysis of the gonad of the lacustrine goby (Gobiopterus lacustris)[J]. Journal of fisheries of china, 2021, 45(3): 365-380. DOI: 10.11964/jfc.20200312214
Citation: DONG Zhongdian, LI Xueyou, HUANG Chengqin, ZHANG Hairui, HUANG Shunkai, ZHANG Ning, GUO Yusong, WANG Zhongduo. Comparative transcriptome analysis of the gonad of the lacustrine goby (Gobiopterus lacustris)[J]. Journal of fisheries of china, 2021, 45(3): 365-380. DOI: 10.11964/jfc.20200312214

Comparative transcriptome analysis of the gonad of the lacustrine goby (Gobiopterus lacustris)

Funds: National Natural Science Foundation of China (41806195; 31201996); Technology Planning Project of Guangdong Province, China (2017A030303075); Guangdong Ocean University Featured Innovation Project(230419069; 230419055); Start-up Fund from GDOU
More Information
  • Corresponding author:

    WANG Zhongduo. E-mail: aduofa@hotmail.com

  • Received Date: March 29, 2020
  • Revised Date: May 31, 2020
  • Available Online: February 23, 2021
  • Published Date: March 01, 2021
  • Lacustrine goby (Gobiopterus lacustris) belongs to a genus of gobies that are small in size and endemic to freshwater, brackish waters or coastal environments around the Indian and Pacific oceans. G. lacustris has almost transparent skin and clearly visible internal organs, making it an ideal fish model for potential research in development, reproduction and other fields. Here, we constructed gonadal transcriptomes of G. lacustris using Illumina sequencing for the first time and identified genes that may be involved in gonadal development, gametogenesis and reproduction. Row reads were assembled into 62 573 unigenes with N50 value of 3 082 bp and a mean length of 1 869 bp. 41 480, 32 848, 37 500, 35 394, 18 318, 35 394 and 27 009 unigenes were successfully annotated in NR, NT, SwissProt, PFAM, KOG, GO and KEGG databases, respectively. Gene expression patterns in the ovary and testis were compared, and 10 954 differentially expressed genes (DEGs) were identified. Among these genes, 8 571 were up-regulated in the ovary, and 2 383 were up-regulated in the testis. qPCR analysis of 14 selected genes showed patterns consistent with the transcriptome results. Numerous DEGs involved in gonadal development and gametogenesis were identified, including foxl2, dmrt1, cyp19a1a, inha, inhb, sycp2, zglp1, tdrp, zps and esra. Using GO and KEGG enrichment analyses, pathways involved regulation of gonadal development and gametogenesis, such as “ubiquitin mediated proteolysis”, “oocyte meiosis”, “progesterone-mediated oocyte maturation”, “p53 signaling pathway” and “PI3K-Akt signaling pathway”, were also identified. In addition, 38 550 simple sequence repeats were identified from 20 517 SSR containing sequences, and 192 450 single nucleotide polymorphisms were detected. This study denotes the first gonadal transcriptomic analysis of G. lacustris and provides a valuable dataset for future functional analysis of sex-associated and molecular marker-assisted selections in G. lacustris.
  • [1]
    Matsuda M, Nagahama Y, Shinomiya A, et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish[J]. Nature, 2002, 417(6888): 559-563. doi: 10.1038/nature751
    [2]
    Yano A, Guyomard R, Nicol B, et al. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss[J]. Current Biology, 2012, 22(15): 1423-1428. doi: 10.1016/j.cub.2012.05.045
    [3]
    Kamiya T, Kai W, Tasumi S, et al. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu)[J]. PLoS Genetics, 2012, 8(7): e1002798. doi: 10.1371/journal.pgen.1002798
    [4]
    Hattori R S, Murai Y, Oura M, et al. A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(8): 2955-2959. doi: 10.1073/pnas.1018392109
    [5]
    Myosho T, Otake H, Masuyama H, et al. Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis[J]. Genetics, 2012, 191(1): 163-170. doi: 10.1534/genetics.111.137497
    [6]
    Cui Z K, Liu Y, Wang W W, et al. Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis)[J]. Scientific Reports, 2017, 7: 42213. doi: 10.1038/srep42213
    [7]
    Chen S L, Zhang G J, Shao C W, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle[J]. Nature Genetics, 2014, 46(3): 253-260. doi: 10.1038/ng.2890
    [8]
    Fan Z F, You F, Wang L J, et al. Gonadal transcriptome analysis of male and female olive flounder (Paralichthys olivaceus)[J]. BioMed Research International, 2014, 2014: 291067.
    [9]
    Kikuchi K, Hamaguchi S. Novel sex-determining genes in fish and sex chromosome evolution[J]. Developmental Dynamics, 2013, 242(4): 339-353. doi: 10.1002/dvdy.23927
    [10]
    Song F B, Wang L M, Zhu W B, et al. A novel igf3 gene in common carp (Cyprinus carpio): evidence for its role in regulating gonadal development[J]. PLoS One, 2016, 11(12): e0168874. doi: 10.1371/journal.pone.0168874
    [11]
    Devlin R H, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences[J]. Aquaculture, 2002, 208(3-4): 191-364. doi: 10.1016/S0044-8486(02)00057-1
    [12]
    Du X X, Wang B, Liu X M, et al. Comparative transcriptome analysis of ovary and testis reveals potential sex-related genes and pathways in spotted knifejaw Oplegnathus punctatus[J]. Gene, 2017, 637: 203-210. doi: 10.1016/j.gene.2017.09.055
    [13]
    Tian C X, Li Z Y, Dong Z D, et al. Transcriptome analysis of male and female mature gonads of silver sillago (Sillago sihama)[J]. Genes, 2019, 10(2): 129. doi: 10.3390/genes10020129
    [14]
    龙娟, 郑树清, 王晓双, 等. TGF-β信号通路在鱼类性别决定与分化中的作用[J]. 水产学报, 2020, 44(1): 166-177.

    Long J, Zheng S Q, Wang X S, et al. Role of TGF-β signaling pathway in sex determination and differentiation in fish[J]. Journal of Fisheries of China, 2020, 44(1): 166-177(in Chinese).
    [15]
    Sun F Y, Liu S K, Gao X Y, et al. Male-biased genes in catfish as revealed by RNA-Seq analysis of the testis transcriptome[J]. PLoS One, 2013, 8(7): e68452. doi: 10.1371/journal.pone.0068452
    [16]
    He F X, Jiang D N, Huang Y Q, et al. Comparative transcriptome analysis of male and female gonads reveals sex-biased genes in spotted scat (Scatophagus argus)[J]. Fish Physiology and Biochemistry, 2019, 45(6): 1963-1980. doi: 10.1007/s10695-019-00693-8
    [17]
    Wang Z D, Liao J, Huang C Q, et al. Significant genetic differentiation of Gobiopterus lacustris, a newly recorded transparent goby in China[J]. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2018, 29(5): 785-791.
    [18]
    廖健, 张顺, 龙水生, 等. 5种虾虎鱼类线粒体COI基因序列变异及系统进化[J]. 广东海洋大学学报, 2016, 36(1): 7-12. doi: 10.3969/j.issn.1673-9159.2016.01.002

    Liao J, Zhang S, Long S S, et al. Sequence variation and molecular phylogeny of mitochondrial COI gene segments from five species of Gobiidae family[J]. Journal of Guangdong Ocean University, 2016, 36(1): 7-12(in Chinese). doi: 10.3969/j.issn.1673-9159.2016.01.002
    [19]
    黄承勤, 廖健, 张顺, 等. 中国鳍虾虎鱼属(鲈形目: 虾虎鱼科)一新纪录种[J]. 广东海洋大学学报, 2018, 38(2): 1-6. doi: 10.3969/j.issn.1673-9159.2018.02.001

    Huang C Q, Liao J, Zhang S, et al. A new record of gobiopterus (Perciformes: Gobiidae) in China[J]. Journal of Guangdong Ocean University, 2018, 38(2): 1-6(in Chinese). doi: 10.3969/j.issn.1673-9159.2018.02.001
    [20]
    Nan F R, Feng J, Lv J P, et al. Transcriptome analysis of the typical freshwater rhodophytes Sheathia arcuata grown under different light intensities[J]. PLoS One, 2018, 13(5): e0197729. doi: 10.1371/journal.pone.0197729
    [21]
    Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29(7): 644-652. doi: 10.1038/nbt.1883
    [22]
    Moriya Y, Itoh M, Okuda S, et al. KAAS: an automatic genome annotation and pathway reconstruction server[J]. Nucleic Acids Research, 2007, 35(S2): W182-W185.
    [23]
    Eddy S R. Accelerated profile HMM searches[J]. PLoS Computational Biology, 2011, 7(10): e1002195. doi: 10.1371/journal.pcbi.1002195
    [24]
    Finn R D, Mistry J, Tate J, et al. The Pfam protein families database[J]. Nucleic Acids Research, 2010, 38(S1): D211-D222.
    [25]
    Götz S, García-Gómez J M, Terol J, et al. High-throughput functional annotation and data mining with the Blast2GO suite[J]. Nucleic Acids Research, 2008, 36(10): 3420-3435. doi: 10.1093/nar/gkn176
    [26]
    Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12: 323. doi: 10.1186/1471-2105-12-323
    [27]
    Wang L K, Feng Z X, Wang X, et al. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics, 2010, 26(1): 136-138. doi: 10.1093/bioinformatics/btp612
    [28]
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
    [29]
    Hu Q M, Tian H F, Li W, et al. Identification of critical sex-biased genes in Andrias davidianus by de novo transcriptome[J]. Molecular Genetics and Genomics, 2019, 294(2): 287-299. doi: 10.1007/s00438-018-1508-4
    [30]
    Li Y P, Zhang L L, Sun Y, et al. Transcriptome sequencing and comparative analysis of ovary and testis identifies potential key sex-related genes and pathways in scallop Patinopecten yessoensis[J]. Marine Biotechnology, 2016, 18(4): 453-465. doi: 10.1007/s10126-016-9706-8
    [31]
    You X X, Bian C, Zan Q J, et al. Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes[J]. Nature Communications, 2014, 5: 5594. doi: 10.1038/ncomms6594
    [32]
    Webster K A, Schach U, Ordaz A, et al. Dmrt1 is necessary for male sexual development in Zebrafish[J]. Developmental Biology, 2017, 422(1): 33-46. doi: 10.1016/j.ydbio.2016.12.008
    [33]
    江东能,彭友幸,黄远青,等. 基于天然XY雌鱼培育YY超雄尼罗罗非鱼的新方法[J]. 水产学报, 2020, 44(11): 1862-1872. doi: 10.11964/jfc.20191112084

    Jiang D N,Peng Y X, Huang Y Q,et al. Comparative transcriptome analysis of male and female gonads reveals sex-biased genes in spotted scat (Scatophagus argus)[J]. Journal of Fisheries of China, 2020, 44(11): 1862-1872(in Chinese). doi: 10.11964/jfc.20191112084
    [34]
    Masuyama H, Yamada M, Kamei Y, et al. Dmrt1 mutation causes a male-to-female sex reversal after the sex determination by Dmy in the medaka[J]. Chromosome Research, 2012, 20(1): 163-176. doi: 10.1007/s10577-011-9264-x
    [35]
    Lin Q H, Mei J, Li Z, et al. Distinct and cooperative roles of amh and dmrt1 in self-renewal and differentiation of male germ cells in Zebrafish[J]. Genetics, 2017, 207(3): 1007-1022. doi: 10.1534/genetics.117.300274
    [36]
    Zhang X B, Li M R, Ma H, et al. Mutation of foxl2 or cyp19a1a results in female to male sex reversal in XX nile tilapia[J]. Endocrinology, 2017, 158(8): 2634-2647.
    [37]
    Yang Y J, Wang Y, Li Z, et al. Sequential, divergent, and cooperative requirements of foxl2a and foxl2b in ovary development and maintenance of Zebrafish[J]. Genetics, 2017, 205(4): 1551-1572. doi: 10.1534/genetics.116.199133
    [38]
    Lindeman R E, Gearhart M D, Minkina A, et al. Sexual cell-fate reprogramming in the ovary by DMRT1[J]. Current Biology, 2015, 25(6): 764-771. doi: 10.1016/j.cub.2015.01.034
    [39]
    Li M H, Yang H H, Li M R, et al. Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs[J]. Endocrinology, 2013, 154(12): 4814-4825. doi: 10.1210/en.2013-1451
    [40]
    Li S R, Lu M M, Zhou D Y, et al. GLP-1: a novel zinc finger protein required in somatic cells of the gonad for germ cell development[J]. Developmental Biology, 2007, 301(1): 106-116. doi: 10.1016/j.ydbio.2006.07.048
    [41]
    Strauss T J, Castrillon D H, Hammes S R. GATA-like protein-1 (GLP-1) is required for normal germ cell development during embryonic oogenesis[J]. Reproduction, 2011, 141(2): 173-181. doi: 10.1530/REP-10-0376
    [42]
    Dong Z D, Zhang N, Liu Y, et al. Expression analysis and characterization of zglp1 in the Chinese tongue sole (Cynoglossus semilaevis)[J]. Gene, 2019, 683: 72-79. doi: 10.1016/j.gene.2018.10.003
    [43]
    Howes L, Jones R. Interactions between zona pellucida glycoproteins and sperm proacrosin/acrosin during fertilization[J]. Journal of Reproductive Immunology, 2002, 53(1-2): 181-192. doi: 10.1016/S0165-0378(01)00101-2
    [44]
    Zeng S, Gong Z Y. Expressed sequence tag analysis of expression profiles of Zebrafish testis and ovary[J]. Gene, 2002, 294(1-2): 45-53. doi: 10.1016/S0378-1119(02)00791-6
    [45]
    Liu X J, Wang H, Gong Z Y. Tandem-repeated Zebrafish zp3 genes possess oocyte-specific promoters and are insensitive to estrogen induction[J]. Biology of Reproduction, 2006, 74(6): 1016-1025. doi: 10.1095/biolreprod.105.049403
    [46]
    Wu T L, Cheng Y Y, Liu Z L, et al. Bioinformatic analyses of zona pellucida genes in vertebrates and their expression in Nile tilapia[J]. Fish Physiology and Biochemistry, 2018, 44(2): 435-449. doi: 10.1007/s10695-017-0434-4
    [47]
    Svechnikov K, Söder O. Ontogeny of gonadal sex steroids[J]. Best Practice & Research Clinical Endocrinology & Metabolism, 2008, 22(1): 95-106.
    [48]
    Applebaum S L, Wilson C A, Holt G J, et al. The onset of cortisol synthesis and the stress response is independent of changes in CYP11B or CYP21 mRNA levels in larval red drum (Sciaenops ocellatus)[J]. General and Comparative Endocrinology, 2010, 165(2): 269-276. doi: 10.1016/j.ygcen.2009.07.003
    [49]
    Socorro S, Martins R S, Deloffre L, et al. A cDNA for European sea bass (Dicentrachus labrax) 11β-hydroxylase: gene expression during the thermosensitive period and gonadogenesis[J]. General and Comparative Endocrinology, 2007, 150(1): 164-173. doi: 10.1016/j.ygcen.2006.07.018
    [50]
    Liu S J, Govoroun M, D'Cotta H, et al. Expression of cytochrome P45011β (11β-hydroxylase) gene during gonadal sex differentiation and spermatogenesis in rainbow trout, Oncorhynchus mykiss[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2000, 75(4-5): 291-298. doi: 10.1016/S0960-0760(00)00186-2
    [51]
    Li Q Q, Du X, Pan Z X, et al. The transcription factor SMAD4 and miR-10b contribute to E2 release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1[J]. Molecular and Cellular Endocrinology, 2018, 476: 84-95. doi: 10.1016/j.mce.2018.04.012
    [52]
    Knight P G, Satchell L, Glister C. Intra-ovarian roles of activins and inhibins[J]. Molecular and Cellular Endocrinology, 2012, 359(1-2): 53-65. doi: 10.1016/j.mce.2011.04.024
    [53]
    Wu T T, Patel H, Mukai S, et al. Activin, inhibin, and follistatin in zebrafish ovary: expression and role in oocyte maturation[J]. Biology of Reproduction, 2000, 62(6): 1585-1592. doi: 10.1095/biolreprod62.6.1585
    [54]
    Lankford S E, Weber G M. Temporal mRNA expression of transforming growth factor-beta superfamily members and inhibitors in the developing rainbow trout ovary[J]. General and Comparative Endocrinology, 2010, 166(2): 250-258. doi: 10.1016/j.ygcen.2009.09.007
    [55]
    Lankford S E, Weber G M. The maturation-inducing hormone 17α, 20β-dihydroxy-4-pregnen-3-one regulates gene expression of inhibin βA and bambi (bone morphogenetic protein and activin-membrane-bound inhibitor) in the rainbow trout ovary[J]. General & Comparative Endocrinology, 2010, 168(3): 369-376.
    [56]
    Wang X C, Jiang H W, Zhou W B, et al. Molecular cloning of a novel nuclear factor, TDRP1, in spermatogenic cells of testis and its relationship with spermatogenesis[J]. Biochemical and Biophysical Research Communications, 2010, 394(1): 29-35. doi: 10.1016/j.bbrc.2010.02.061
    [57]
    Yang Y X, Wang J T, Han T, et al. Ovarian transcriptome analysis of Portunus trituberculatus provides insights into genes expressed during phase III and IV development[J]. PLoS One, 2015, 10(10): e0138862. doi: 10.1371/journal.pone.0138862
    [58]
    Rodríguez-Marí A, Cañestro C, BreMiller R A, et al. Sex reversal in Zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis[J]. PLoS Genetics, 2010, 6(7): e1001034. doi: 10.1371/journal.pgen.1001034
    [59]
    Louw-du Toit R, Storbeck K H, Cartwright M, et al. Progestins used in endocrine therapy and the implications for the biosynthesis and metabolism of endogenous steroid hormones[J]. Molecular and Cellular Endocrinology, 2017, 441: 31-45. doi: 10.1016/j.mce.2016.09.004
    [60]
    Chambard J C, Lefloch R, Pouysségur J, et al. ERK implication in cell cycle regulation[J]. Biochimica et Biophysica Acta, 2007, 1773(8): 1299-1310. doi: 10.1016/j.bbamcr.2006.11.010
    [61]
    Lee S, Suk K, Kim I K, et al. Signaling pathways of bisphenol A-induced apoptosis in hippocampal neuronal cells: Role of calcium-induced reactive oxygen species, mitogen-activated protein kinases, and nuclear factor-κB[J]. Journal of Neuroscience Research, 2008, 86(13): 2932-2942. doi: 10.1002/jnr.21739
    [62]
    Zhao D, Zhang X Y. Selenium antagonizes the lead-induced apoptosis of chicken splenic lymphocytes in vitro by activating the PI3K/Akt pathway[J]. Biological Trace Element Research, 2018, 182(1): 119-129. doi: 10.1007/s12011-017-1088-x
  • Related Articles

    [1]ZHONG Xiao, XU Bin, LIU Jiaxin, WANG Yilei. Effects of arachidonic acid (ARA) on reproduction, immunity, and lipid metabolism of Penaeus vannamei broodstocks[J]. Journal of fisheries of china, 2024, 48(9): 099605. DOI: 10.11964/jfc.20231214295
    [2]ZHANG Jian, LIU Wenjun, WANG Yixi, WANG Xiao, SHI Jiangao, YE Xuchang. Reproductive biology of bigeye tuna (Thunnus obesus) in the tropical western and central Pacific Ocean[J]. Journal of fisheries of china, 2024, 48(6): 069306. DOI: 10.11964/jfc.20211013134
    [3]HUANG Xiaorong, HE Lulu, FENG Guangpeng, GENG Zhi, ZHAO Feng, ZHANG Tao, TAN Ru, DU Nan, ZHUANG Ping. Effects of salinity on reproductive characteristics and embryo quality of Eriocheir sinensis[J]. Journal of fisheries of china, 2023, 47(3): 039611. DOI: 10.11964/jfc.20210712966
    [4]LI Xueyou, XIE Minghua, HUANG Chengqin, WANG Chun, WANG Zhongduo, GUO Yusong, DONG Zhongdian. Comparative analysis of skin and eye transcriptome in the Gobiopterus lacustris[J]. Journal of fisheries of china, 2021, 45(8): 1317-1326. DOI: 10.11964/jfc.20200912401
    [5]SUN Ming, DUAN Yan, CHAI Yu, DONG Jing, WANG Yitong, XING Qinwang, LI Nan. Laboratory observation and a new discovery report on the asexual reproduction of Aurelia coerulea polyp[J]. Journal of fisheries of china, 2020, 44(12): 2007-2016. DOI: 10.11964/jfc.20190111635
    [6]XU Xinghong, MENG Xiao, GAN Hongtao, LIU Tonghao, DING Ziyuan, YAO Haiyang, XU Guocheng, DING Shan, FU Ziyue, CHEN Wei. Reproductive biology of Urechis unicinctus[J]. Journal of fisheries of china, 2020, 44(8): 1275-1285. DOI: 10.11964/jfc.20190611852
    [7]LIN Lidong, SHANG Tiange, ZHANG Tiantian, WANG Caixia, CHEN Binbin, WU Mingjiang, MA Zengling. Supplementary study on reproductive biology and life cycle of Sargassum fusiforme (Phaeophyceae)[J]. Journal of fisheries of china, 2020, 44(4): 581-595. DOI: 10.11964/jfc.20190111639
    [8]PENG Di, CHEN Xiaoru, WEN Hua, WU Fan, LU Xing, TIAN Juan, LIU Wei, JIANG Ming, YU Lijuan, ZHANG Lu, LI Shuyun. Effects of dietary lipid levels on growth performance, muscle composition, reproductive performance and hemolymph biochemical indices of Procambarus clarkii broodstock[J]. Journal of fisheries of china, 2019, 43(10): 2175-2185. DOI: 10.11964/jfc.20190911973
    [9]ZHANG Xiumei, WANG Linlong, ZHANG Yuyang, LUO Gang, GAO Haoyuan. Strategy optimization of stock enhancement of golden cuttlefish, (Sepia esculenta) based on structural characteristics of reproductive and recruitment populations[J]. Journal of fisheries of china, 2019, 43(9): 1890-1899. DOI: 10.11964/jfc.20190711877
    [10]JIAO Kaiqiang, WANG Yingeng, RONG Xiaojun, CHEN Jia, ZHANG Zheng, LIAO Meijie, LI Bin, SUN Luyu, SU Yuezhong. Pathogenicity of Cryptocaryon irritans to Larimichthys crocea and Chinese herbal inhibition on the parasitic generation reproduction[J]. Journal of fisheries of china, 2019, 43(5): 1326-1337. DOI: 10.11964/jfc.20180311206
  • Cited by

    Periodical cited type(9)

    1. 樊佳慧,叶欢,宋信华,岳华梅,黄玲,阮瑞,郜卫华,李创举. 长吻鮠雌雄性腺转录组比较分析. 中国水产科学. 2024(02): 129-143 .
    2. 张纬宇,陈再忠,温彬,高建忠. 神仙鱼透明鳃盖转录组解析. 广东农业科学. 2024(04): 54-64 .
    3. 吴丹,陈四清,柯翎,张子阳,朱金超,潘鲁莹,李凤辉,徐荣静,彭立成,边力. 绿鳍马面鲀雌雄性腺转录组比较分析. 渔业科学进展. 2024(04): 53-64 .
    4. 史东杰,张强,伍仕弘,高坚,魏东,张欣,王赛赛,孙砚胜,姜巨峰,李文通,杨昊坤. 两种单色鲤皮肤转录组特征分析. 大连海洋大学学报. 2023(01): 22-31 .
    5. 张颖,马波,李雷,尹家胜,李宝海,周建设. 黑斑原鮡肝脏与副肝代谢差异比较. 中国水产科学. 2022(03): 435-445 .
    6. 刘香亚,江婷,肖海军,张万娜. 棉铃虫雌雄性腺转录组的比较分析. 应用昆虫学报. 2022(02): 333-344 .
    7. 覃英灿,容万韬,李月妹,陆桂红,李晓东. 眼优角蚱两性成体转录组差异分析. 环境昆虫学报. 2022(04): 968-977 .
    8. 孙承熙,董浚键,孙成飞,胡婕,田园园,顾泽茂,叶星. 大口黑鲈雌雄性腺转录组特征分析. 基因组学与应用生物学. 2022(05): 946-959 .
    9. 钟爱华,代小新. 黄颡鱼(Pelteobagrus fulvidraco)成体造血器官头肾和体肾转录组比较研究. 海洋与湖沼. 2021(06): 1486-1495 .

    Other cited types(6)

Catalog

    Article views (1479) PDF downloads (42) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return