Citation: | WANG Chunyue, PAN Chen, LIAO Zhi, FAN Meihua, YAN Xiaojun. Effects of β-alanine supplementation on the metabolomics of Mytilus coruscus[J]. Journal of fisheries of china, 2021, 45(1): 55-67. DOI: 10.11964/jfc.20200412241 |
[1] |
Boldyrev A A, Aldini G, Derave W. Physiology and pathophysiology of carnosine[J]. Physiological Reviews, 2013, 93(4): 1803-1845. doi: 10.1152/physrev.00039.2012
|
[2] |
Boldyrev A A, Stvolinsky S L, Fedorova T N, et al. Carnosine as a natural antioxidant and geroprotector: from molecular mechanisms to clinical trials[J]. Rejuvenation Research, 2010, 13(2-3): 156-158. doi: 10.1089/rej.2009.0923
|
[3] |
Hoffman J R, Zuckerman A, Ram O, et al. Behavioral and inflammatory response in animals exposed to a low-pressure blast wave and supplemented with β-alanine[J]. Amino Acids, 2017, 49(5): 871-886. doi: 10.1007/s00726-017-2383-8
|
[4] |
Boldyrev A, Bulygina E, Leinsoo T, et al. Protection of neuronal cells against reactive oxygen species by carnosine and related compounds[J]. Comparative Biochemistry and Physiology-Part B: Biochemistry and Molecular Biology, 2004, 137(1): 81-88. doi: 10.1016/j.cbpc.2003.10.008
|
[5] |
Hipkiss A R, Worthington V C, Himsworth D T J, et al. Protective effects of carnosine against protein modification mediated by malondialdehyde and hypochlorite[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 1998, 1380(1): 46-54. doi: 10.1016/S0304-4165(97)00123-2
|
[6] |
Kohen R, Yamamoto Y, Cundy K C, et al. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain[J]. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(9): 3175-3179. doi: 10.1073/pnas.85.9.3175
|
[7] |
Trombley P Q, Horning M S, Blakemore L J. Interactions between carnosine and zinc and copper: implications for neuromodulation and neuroprotection[J]. Biochemistry (Mosc), 2000, 65(7): 807-816.
|
[8] |
Quinn P J, Boldyrev A, Formazuyk V E. Carnosine: its properties, functions and potential therapeutic applications[J]. Molecular aspects of Medicine, 1992, 13(5): 379-444. doi: 10.1016/0098-2997(92)90006-L
|
[9] |
Yagasaki M, Hashimoto S I. Synthesis and application of dipeptides; current status and perspectives[J]. Applied Microbiology and Biotechnology, 2008, 81(1): 13-22. doi: 10.1007/s00253-008-1590-3
|
[10] |
Janssen B, Hohenadel D, Brinkkoetter P, et al. Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1[J]. Diabetes, 2005, 54(8): 2320-2327. doi: 10.2337/diabetes.54.8.2320
|
[11] |
Baye E, Ukropec J, de Courten M P J, et al. Carnosine supplementation reduces plasma soluble transferrin receptor in healthy overweight or obese individuals: a pilot randomised trial[J]. Amino Acids, 2019, 51(1): 73-81.
|
[12] |
Dunnett M, Harris R C. Influence of oral ß-alanine and L-histidine supplementation on the carnosine content of the gluteus medius[J]. Equine Veterinary Journal, 1999, 31(S30): 499-504.
|
[13] |
Harris R C, Tallon M J, Dunnett M, et al. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis[J]. Amino Acids, 2006, 30(3): 279-289.
|
[14] |
Blancquaert L, Everaert I, Derave W. Beta-alanine supplementation, muscle carnosine and exercise performance[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, 18(1): 63-70.
|
[15] |
Saunders B, Elliott-Sale K, Artioli G G, et al. β-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis[J]. British Journal of Sports Medicine, 2017, 51(8): 658-669.
|
[16] |
Tomonaga S, Kaji Y, Tachibana T, et al. Oral administration of β-alanine modifies carnosine concentrations in the muscles and brains of chickens[J]. Animal Science Journal, 2005, 76(3): 249-254.
|
[17] |
Kralik G, Sak-Bosnar M, Kralik Z, et al. Effects of β-alanine dietary supplementation on concentration of carnosine and quality of broiler muscle tissue[J]. The Journal of Poultry Science, 2014, 51(2): 151-156.
|
[18] |
Łukasiewicz M, Puppel K, Kuczyńska B, et al. β-alanine as a factor influencing the content of bioactive dipeptides in muscles of Hubbard Flex chickens[J]. Journal of the Science of Food and Agriculture, 2015, 95(12): 2562-2565.
|
[19] |
Geda F, Declercq A, Decostere A, et al. β-Alanine does not act through branched-chain amino acid catabolism in carp, a species with low muscular carnosine storage[J]. Fish Physiology and Biochemistry, 2015, 41(1): 281-287.
|
[20] |
Oehlenschläger J. Seafood: nutritional benefits and risk aspects[J]. International Journal for Vitamin and Nutrition Research, 2012, 82(3): 168-176.
|
[21] |
Crush K G. Carnosine and related substances in animal tissues[J]. Comparative Biochemistry and Physiology, 1970, 34(1): 3-30.
|
[22] |
Aristoy M C, Toldrá F. Histidine dipeptides HPLC-based test for the detection of mammalian origin proteins in feeds for ruminants[J]. Meat Science, 2004, 67(2): 211-217.
|
[23] |
Abe H, Dobson G P, Hoeger U, et al. Role of histidine-related compounds to intracellular buffering in fish skeletal muscle[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 1985, 249(4): R449-R454.
|
[24] |
Wen B, Mei Z L, Zeng C W, et al. metaX: a flexible and comprehensive software for processing metabolomics data[J]. BMC Bioinformatics, 2017, 18(1): 183.
|
[25] |
Barker M, Rayens W. Partial least squares for discrimination[J]. Journal of Chemometrics, 2003, 17(3): 166-173.
|
[26] |
Westerhuis J A, Hoefsloot H C J, Smit S, et al. Assessment of PLSDA cross validation[J]. Metabolomics, 2008, 4(1): 81-89.
|
[27] |
Kim S K, Takeuchi T, Yokoyama M, et al. Effect of dietary supplementation with taurine, β-alanine and GABA on the growth of juvenile and fingerling Japanese flounder Paralichthys olivaceus[J]. Fisheries Science, 2003, 69(2): 242-248.
|
[28] |
Duhazé C, Gagneul D, Leport L, et al. Uracil as one of the multiple sources of β-alanine in Limonium latifolium, a halotolerant β-alanine betaine accumulating Plumbaginaceae[J]. Plant Physiology and Biochemistry, 2003, 41(11-12): 993-998.
|
[29] |
Cronan J E J. β-alanine synthesis in Escherichia coli[J]. Journal of Bacteriology, 1980, 141(3): 1291-1297.
|
[30] |
Fouad W M, Altpeter F. Transplastomic expression of bacterial L-aspartate-α-decarboxylase enhances photosynthesis and biomass production in response to high temperature stress[J]. Transgenic Research, 2009, 18(5): 707-718.
|
[31] |
Ottenhof H H, Ashurst J L, Whitney H M, et al. Organisation of the pantothenate (vitamin B5) biosynthesis pathway in higher plants[J]. The Plant Journal, 2004, 37(1): 61-72.
|
[32] |
Shi J Y, Blundell T L, Mizuguchi K. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties[J]. Journal of Molecular Biology, 2001, 310(1): 243-257.
|
[33] |
Yang C Y, Hao R J, Du X D, et al. Response to different dietary carbohydrate and protein levels of pearl oysters (Pinctada fucata martensii) as revealed by GC–TOF/MS-based metabolomics[J]. Science of the Total Environment, 2019, 650: 2614-2623.
|
[34] |
Pihl A, Fritzson P. The catabolism of C14-labeled β-alanine in the intact rat[J]. Journal of Biological Chemistry, 1955, 215(1): 345-351.
|
[35] |
Ito S, Ohyama T, Kontani Y, et al. Influence of dietary protein levels on beta-alanine aminotransferase expression and activity in rats[J]. Journal of Nutritional Science and Vitaminology, 2001, 47(4): 275-282.
|
[36] |
Rodionov R N, Jarzebska N, Weiss N, et al. AGXT2: a promiscuous aminotransferase[J]. Trends in Pharmacological Sciences, 2014, 35(11): 575-582.
|
[37] |
Baxter C F, Roberts E. Elevation of γ-aminobutyric acid in brain: selective inhibition of γ-aminobutyric-α-ketoglutaric acid transaminase[J]. Journal of Biological Chemistry, 1961, 236(12): 3287-3294.
|
[38] |
Kurozumi Y, Abe T, Yao W B, et al. Experimental beta-alaninuria induced by (aminooxy) acetate[J]. Acta Medica Okayama, 1999, 53(1): 13-18.
|
[39] |
Tikunov A P, Stoskopf M K, MacDonald J M. Fluxomics of the eastern oyster for environmental stress studies[J]. Metabolites, 2014, 4(1): 53-70.
|
[40] |
Emery P W. Basic metabolism: protein[J]. Surgery (Oxford), 2009, 27(5): 185-189.
|
[41] |
Harris R C, Jones G, Hill C H, et al. The carnosine content of V lateralis in vegetarians and omnivores[J]. The FASEB Journal, 2007, 21(6): 944-944.
|
[42] |
Stegen S, Blancquaert L, Everaert I, et al. Meal and beta-alanine coingestion enhances muscle carnosine loading[J]. Medicine & Science in Sports & Exercise, 2013, 45(8): 1478-1485.
|
[43] |
Ma H J, Zhao J J, Meng H B, et al. Carnosine-modified fullerene as a highly enhanced ROS scavenger for mitigating acute oxidative stress[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16104-16113.
|
1. |
赵嫚,刘薇,成浩,王美南. β-丙氨酸合成方法的研究进展. 食品与发酵工业. 2022(10): 306-313 .
![]() | |
2. |
聂琦,黄婕,刘宗玄,吉鸿睿,潘雨声,张治洲. 利用差异代谢组学分析寻找海洋防污天然小分子. 应用与环境生物学报. 2022(03): 683-692 .
![]() |