Citation: | LI Xueyou, XIE Minghua, HUANG Chengqin, WANG Chun, WANG Zhongduo, GUO Yusong, DONG Zhongdian. Comparative analysis of skin and eye transcriptome in the Gobiopterus lacustris[J]. Journal of fisheries of china, 2021, 45(8): 1317-1326. DOI: 10.11964/jfc.20200912401 |
[1] |
Sköld H N, Aspengren S, Wallin M. Rapid color change in fish and amphibians-function, regulation, and emerging applications[J]. Pigment Cell & Melanoma Research, 2013, 26(1): 29-38.
|
[2] |
蒋焯, 黄权. 鱼类体色成因及影响因素研究进展[J]. 水产科技情报, 2019, 46(2): 110-113.
Jiang Z, Huang Q. Research progress on the cause of formation of fish body color and its influencing factors[J]. Fisheries Science & Technology Information, 2019, 46(2): 110-113(in Chinese).
|
[3] |
Odenthal J, Rossnagel K, Haffter P, et al. Mutations affecting xanthophore pigmentation in the zebrafish, Danio rerio[J]. Development, 1996, 123: 391-398.
|
[4] |
Bagnara, J T, Matsumoto J. Comparative anatomy and physiology of pigment cells in nonmammalian tissues[J]. The Pigmentary System: Physiology and Pathophysiology, Second Edition, 2007: 11-59.
|
[5] |
Fujii R. Cytophysiology of fish chromatophores[J]. International Review of Cytology, 1993, 143: 191-255.
|
[6] |
Rawls J F, Mellgren E M, Johnson S L. How the zebrafish gets its stripes[J]. Developmental Biology, 2001, 240(2): 301-314. doi: 10.1006/dbio.2001.0418
|
[7] |
王成辉. 鱼类体色变异的遗传基础研究进展简述[J]. 上海海洋大学学报, 2012, 21(5): 737-742.
Wang C H. Brief summary on genetic basis of pigmentation in fish[J]. Journal of Shanghai Ocean University, 2012, 21(5): 737-742(in Chinese).
|
[8] |
Wang Z D, Liao J, Huang C Q, et al. Significant genetic differentiation of Gobiopterus lacustris, a newly recorded transparent goby in China[J]. Mitochondrial DNA A: DNA Mapping, Sequencing, and Analysis, 2018, 29(5): 785-791.
|
[9] |
廖健, 张顺, 龙水生, 等. 5种虾虎鱼类线粒体COI基因序列变异及系统进化[J]. 广东海洋大学学报, 2016, 36(1): 7-12. doi: 10.3969/j.issn.1673-9159.2016.01.002
Liao J, Zhang S, Long S S, et al. Sequence variation and molecular phylogeny of mitochondrial coi gene segments from five species of gobiidae family[J]. Journal of Guangdong Ocean University, 2016, 36(1): 7-12(in Chinese). doi: 10.3969/j.issn.1673-9159.2016.01.002
|
[10] |
黄承勤, 廖健, 张顺, 等. 中国鳍虾虎鱼属(鲈形目: 虾虎鱼科)一新纪录种[J]. 广东海洋大学学报, 2018, 38(2): 1-6. doi: 10.3969/j.issn.1673-9159.2018.02.001
Huang C Q, Liao J, Zhang S, et al. A new record of gobiopterus (Perciformes: Gobiidae) in China[J]. Journal of Guangdong Ocean University, 2018, 38(2): 1-6(in Chinese). doi: 10.3969/j.issn.1673-9159.2018.02.001
|
[11] |
Du X X, Wang B, Liu X M, et al. Comparative transcriptome analysis of ovary and testis reveals potential sex-related genes and pathways in spotted knifejaw Oplegnathus punctatus[J]. Gene, 2017, 637: 203-210. doi: 10.1016/j.gene.2017.09.055
|
[12] |
邓素贞, 韩兆方, 陈小明, 等. 大黄鱼高温适应的转录组学分析[J]. 水产学报, 2018, 42(11): 1673-1683.
Deng S Z, Hang Z F, Cheng X M, et al. Transcriptome analysis of high-temperature adaptation in large yellow croaker (Larimichthys crocea)[J]. Journal of Fisheries of China, 2018, 42(11): 1673-1683(in Chinese).
|
[13] |
Nan F R, Feng J, Lv J P, et al. Transcriptome analysis of the typical freshwater rhodophytes Sheathia arcuata grown under different light intensities[J]. PLoS One, 2018, 13(5): e0197729. doi: 10.1371/journal.pone.0197729
|
[14] |
Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29(7): 644-652. doi: 10.1038/nbt.1883
|
[15] |
Moriya Y, Itoh M, Okuda S, et al. KAAS: an automatic genome annotation and pathway reconstruction server[J]. Nucleic Acids Research, 2007, 35: W182-W185. doi: 10.1093/nar/gkm321
|
[16] |
Eddy S R. Accelerated profile HMM searches[J]. PLoS Computational Biology, 2011, 7(10): e1002195. doi: 10.1371/journal.pcbi.1002195
|
[17] |
Finn RD, Tate J, Mistry J, et al. The Pfam protein families database[J]. Nucleic Acids Research, 2008, 36: D281-D288. doi: 10.1093/nar/gkn226
|
[18] |
Götz S, García-Gómez J M, Terol J, et al. High-throughput functional annotation and data mining with the Blast2GO suite[J]. Nucleic Acids Research, 2008, 36(10): 3420-3435. doi: 10.1093/nar/gkn176
|
[19] |
Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12: 323. doi: 10.1186/1471-2105-12-323
|
[20] |
Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment[J]. Nucleic Acids research, 2008, 36: D480-D484.
|
[21] |
Ito S, Wakamatsu K, Ozek H. Chemical analysis of melanins and its application to the study of the regulation of melanogenesis[J]. Pigment Cell Research, 2000, 13(S8): 103-109.
|
[22] |
Hallsson J H, Haflidadottir B S, Schepsky A, et al. Evolutionary sequence comparison of the Mitf gene reveals novel conserved domains[J]. Pigment Cell Research, 2007, 20(3): 185-200. doi: 10.1111/j.1600-0749.2007.00373.x
|
[23] |
Rees J L. Genetics of hair and skin color[J]. Annual Review of Genetics, 2003, 37: 67-90. doi: 10.1146/annurev.genet.37.110801.143233
|
[24] |
Buscà R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation[J]. Pigment Cell Research, 2000, 13(2): 60-69. doi: 10.1034/j.1600-0749.2000.130203.x
|
[25] |
Giebel L B, Strunk K M, Spritz R A. Organization and nucleotide sequences of the human tyrosinase gene and a truncated tyrosinase-related segment[J]. Genomics, 1991, 9(3): 435-445. doi: 10.1016/0888-7543(91)90409-8
|
[26] |
Hoekstra H E. Genetics, development and evolution of adaptive pigmentation in vertebrates[J]. Heredity, 2006, 97(3): 222-234. doi: 10.1038/sj.hdy.6800861
|
[27] |
Jimbow K. Biological role of tyrosinase-related protein and its relevance to pigmentary disorders (vitiligo vulgaris)[J]. The Journal of Dermatology, 1999, 26(11): 734-737. doi: 10.1111/j.1346-8138.1999.tb02084.x
|
[28] |
刘丽, 席冬梅, 陈亮, 等. 酪氨酸酶基因遗传变异的研究进展[J]. 中国畜牧兽医, 2010, 37(12): 115-120.
Liu L, Xi D M, Chen L, et al. Genetic variations of the tyrosinase gene[J]. China Animal Husbandry & Veterinary Medicine, 2010, 37(12): 115-120(in Chinese).
|
[29] |
Ito S, Wakamatsu K. Human hair melanins: what we have learned and have not learned from mouse coat color pigmentation[J]. Pigment Cell & Melanoma Research, 2011, 24(1): 63-74.
|
[30] |
Kenny E E, Timpson N J, Sikora M, et al. Melanesian blond hair is caused by an amino acid change in TYRP1[J]. Science, 2012, 336(6081): 554. doi: 10.1126/science.1217849
|
[31] |
Imes D L, Geary L A, Grahn R A, et al. Albinism in the domestic cat (Felis catus) is associated with a tyrosinase (TYR) mutation[J]. Animal Genetics, 2006, 37(2): 175-178. doi: 10.1111/j.1365-2052.2005.01409.x
|
[32] |
Ito S, Wakamatsu K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review[J]. Pigment Cell Research, 2003, 16(5): 523-531. doi: 10.1034/j.1600-0749.2003.00072.x
|
[33] |
Lennartsson J, Rönnstrand L. Stem cell factor receptor/c-Kit: from basic science to clinical implications[J]. Physiological Reviews, 2012, 92(4): 1619-1649. doi: 10.1152/physrev.00046.2011
|
[34] |
Botchkareva N V, Khlgatian M, Longley B J, et al. SCF/c-kit signaling is required for cyclic regeneration of the hair pigmentation unit[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2001, 15(3): 645-658. doi: 10.1096/fj.00-0368com
|
[35] |
Nishikawa S, Kusakabe M, Yoshinaga K, et al. In utero manipulation of coat color formation by a monoclonal anti-c-kit antibody: two distinct waves of c-kit-dependency during melanocyte development[J]. The Embo Journal, 1991, 10(8): 2111-2118. doi: 10.1002/j.1460-2075.1991.tb07744.x
|
[36] |
Yoshida H, Hayashi S I, Shultz L D, et al. Neural and skin cell-specific expression pattern conferred by steel factor regulatory sequence in transgenic mice[J]. Developmental Dynamics, 1996, 207(2): 222-232. doi: 10.1002/(SICI)1097-0177(199610)207:2<222::AID-AJA10>3.0.CO;2-9
|
[37] |
Goding C R. Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage[J]. Genes & Development, 2000, 14(14): 1712-1728.
|
[38] |
Lister J A, Robertson C P, Lepage T, et al. Nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate[J]. Development, 1999, 126(17): 3757-3767.
|
[39] |
Li S J, Wang C, Yu W H, et al. Identification of genes related to white and black plumage formation by RNA-Seq from white and black feather bulbs in ducks[J]. PLoS One, 2012, 7(5): e36592. doi: 10.1371/journal.pone.0036592
|
[40] |
Ginger R S, Askew S E, Ogborne R M, et al. SLC24A5 encodes a trans-Golgi network protein with potassium-dependent sodium-calcium exchange activity that regulates human epidermal melanogenesis[J]. The Journal of Biological Chemistry, 2008, 283(9): 5486-5495. doi: 10.1074/jbc.M707521200
|
[41] |
Lahola-Chomiak A A, Footz T, Nguyen-Phuoc K, et al. Non-Synonymous variants in premelanosome protein (PMEL) cause ocular pigment dispersion and pigmentary glaucoma[J]. Human Molecular Genetics, 2019, 28(8): 1298-1311. doi: 10.1093/hmg/ddy429
|
[42] |
Watt B, van Niel G, Raposo G, et al. PMEL: a pigment cell-specific model for functional amyloid formation[J]. Pigment Cell & Melanoma Research, 2013, 26(3): 300-315.
|
[43] |
Ishishita S, Takahashi M, Yamaguchi K, et al. Nonsense mutation in PMEL is associated with yellowish plumage colour phenotype in Japanese quail[J]. Scientific Reports, 2018, 8(1): 16732. doi: 10.1038/s41598-018-34827-4
|