• ISSN 1000-0615
  • CN 31-1283/S
LI Xueyou, XIE Minghua, HUANG Chengqin, WANG Chun, WANG Zhongduo, GUO Yusong, DONG Zhongdian. Comparative analysis of skin and eye transcriptome in the Gobiopterus lacustris[J]. Journal of fisheries of china, 2021, 45(8): 1317-1326. DOI: 10.11964/jfc.20200912401
Citation: LI Xueyou, XIE Minghua, HUANG Chengqin, WANG Chun, WANG Zhongduo, GUO Yusong, DONG Zhongdian. Comparative analysis of skin and eye transcriptome in the Gobiopterus lacustris[J]. Journal of fisheries of china, 2021, 45(8): 1317-1326. DOI: 10.11964/jfc.20200912401

Comparative analysis of skin and eye transcriptome in the Gobiopterus lacustris

Funds: National Natural Science Foundation of China (41806195, 31201996); Technology Planning Project of Guangdong Province, China (2017A030303075); Guangdong Ocean University Featured Innovation Project (230419069, 230419055); Guangdong Ocean University Nanhai Scholars Program Young Talent Project (QNXZ201903, 201807); Start-up Project from GDOU PhD
More Information
  • Corresponding author:

    DONG Zhongdian. E-mail: zddong@gdou.edu.cn

  • Received Date: September 12, 2020
  • Revised Date: October 27, 2020
  • Available Online: March 02, 2021
  • Published Date: July 31, 2021
  • Gobiopterus lacustris is a kind of small fish with strong adaptability to salinity and easy to raise in laboratory. It is an ideal model organism and environmental indicator species, whose body is transparent and its organs can be seen through naked eyes. In order to explore the cause of the transparent body color of G. lacustris, the transcriptome analysis of skin and eye of G. lacustris was carried out. A total of 103 686 unigenes were obtained by de novo splicing. The N50 and average length were 1 456 and 2 490 bp, respectively. In Nr, Nt, KO, SwissProt, PFAM, GO and KOG databases, 57 380, 37 343, 31 700, 51 277, 47 020, 47 555 and 25 604 unigenes were annotated respectively. KEGG enrichment showed that tyr, tyrp1 and tyrp2 were significantly down regulated in melanin production pathway. In addition, the results showed that there were 8 113 differentially expressed genes (DEGs) in the skin and eyes of G. lacustris, of which 3 174 were up-regulated in the skin and 4 939 in the eyes. The verification of 10 DEGs by qPCR confirmed that the RNA-Seq analysis was correct. This study enriches the body color research of G. lacustris, provides data for the utilization of G. lacustris genetic resources, and also provides a reference for further study on the formation mechanism of gorgeous body color of fish.
  • [1]
    Sköld H N, Aspengren S, Wallin M. Rapid color change in fish and amphibians-function, regulation, and emerging applications[J]. Pigment Cell & Melanoma Research, 2013, 26(1): 29-38.
    [2]
    蒋焯, 黄权. 鱼类体色成因及影响因素研究进展[J]. 水产科技情报, 2019, 46(2): 110-113.

    Jiang Z, Huang Q. Research progress on the cause of formation of fish body color and its influencing factors[J]. Fisheries Science & Technology Information, 2019, 46(2): 110-113(in Chinese).
    [3]
    Odenthal J, Rossnagel K, Haffter P, et al. Mutations affecting xanthophore pigmentation in the zebrafish, Danio rerio[J]. Development, 1996, 123: 391-398.
    [4]
    Bagnara, J T, Matsumoto J. Comparative anatomy and physiology of pigment cells in nonmammalian tissues[J]. The Pigmentary System: Physiology and Pathophysiology, Second Edition, 2007: 11-59.
    [5]
    Fujii R. Cytophysiology of fish chromatophores[J]. International Review of Cytology, 1993, 143: 191-255.
    [6]
    Rawls J F, Mellgren E M, Johnson S L. How the zebrafish gets its stripes[J]. Developmental Biology, 2001, 240(2): 301-314. doi: 10.1006/dbio.2001.0418
    [7]
    王成辉. 鱼类体色变异的遗传基础研究进展简述[J]. 上海海洋大学学报, 2012, 21(5): 737-742.

    Wang C H. Brief summary on genetic basis of pigmentation in fish[J]. Journal of Shanghai Ocean University, 2012, 21(5): 737-742(in Chinese).
    [8]
    Wang Z D, Liao J, Huang C Q, et al. Significant genetic differentiation of Gobiopterus lacustris, a newly recorded transparent goby in China[J]. Mitochondrial DNA A: DNA Mapping, Sequencing, and Analysis, 2018, 29(5): 785-791.
    [9]
    廖健, 张顺, 龙水生, 等. 5种虾虎鱼类线粒体COI基因序列变异及系统进化[J]. 广东海洋大学学报, 2016, 36(1): 7-12. doi: 10.3969/j.issn.1673-9159.2016.01.002

    Liao J, Zhang S, Long S S, et al. Sequence variation and molecular phylogeny of mitochondrial coi gene segments from five species of gobiidae family[J]. Journal of Guangdong Ocean University, 2016, 36(1): 7-12(in Chinese). doi: 10.3969/j.issn.1673-9159.2016.01.002
    [10]
    黄承勤, 廖健, 张顺, 等. 中国鳍虾虎鱼属(鲈形目: 虾虎鱼科)一新纪录种[J]. 广东海洋大学学报, 2018, 38(2): 1-6. doi: 10.3969/j.issn.1673-9159.2018.02.001

    Huang C Q, Liao J, Zhang S, et al. A new record of gobiopterus (Perciformes: Gobiidae) in China[J]. Journal of Guangdong Ocean University, 2018, 38(2): 1-6(in Chinese). doi: 10.3969/j.issn.1673-9159.2018.02.001
    [11]
    Du X X, Wang B, Liu X M, et al. Comparative transcriptome analysis of ovary and testis reveals potential sex-related genes and pathways in spotted knifejaw Oplegnathus punctatus[J]. Gene, 2017, 637: 203-210. doi: 10.1016/j.gene.2017.09.055
    [12]
    邓素贞, 韩兆方, 陈小明, 等. 大黄鱼高温适应的转录组学分析[J]. 水产学报, 2018, 42(11): 1673-1683.

    Deng S Z, Hang Z F, Cheng X M, et al. Transcriptome analysis of high-temperature adaptation in large yellow croaker (Larimichthys crocea)[J]. Journal of Fisheries of China, 2018, 42(11): 1673-1683(in Chinese).
    [13]
    Nan F R, Feng J, Lv J P, et al. Transcriptome analysis of the typical freshwater rhodophytes Sheathia arcuata grown under different light intensities[J]. PLoS One, 2018, 13(5): e0197729. doi: 10.1371/journal.pone.0197729
    [14]
    Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29(7): 644-652. doi: 10.1038/nbt.1883
    [15]
    Moriya Y, Itoh M, Okuda S, et al. KAAS: an automatic genome annotation and pathway reconstruction server[J]. Nucleic Acids Research, 2007, 35: W182-W185. doi: 10.1093/nar/gkm321
    [16]
    Eddy S R. Accelerated profile HMM searches[J]. PLoS Computational Biology, 2011, 7(10): e1002195. doi: 10.1371/journal.pcbi.1002195
    [17]
    Finn RD, Tate J, Mistry J, et al. The Pfam protein families database[J]. Nucleic Acids Research, 2008, 36: D281-D288. doi: 10.1093/nar/gkn226
    [18]
    Götz S, García-Gómez J M, Terol J, et al. High-throughput functional annotation and data mining with the Blast2GO suite[J]. Nucleic Acids Research, 2008, 36(10): 3420-3435. doi: 10.1093/nar/gkn176
    [19]
    Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12: 323. doi: 10.1186/1471-2105-12-323
    [20]
    Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment[J]. Nucleic Acids research, 2008, 36: D480-D484.
    [21]
    Ito S, Wakamatsu K, Ozek H. Chemical analysis of melanins and its application to the study of the regulation of melanogenesis[J]. Pigment Cell Research, 2000, 13(S8): 103-109.
    [22]
    Hallsson J H, Haflidadottir B S, Schepsky A, et al. Evolutionary sequence comparison of the Mitf gene reveals novel conserved domains[J]. Pigment Cell Research, 2007, 20(3): 185-200. doi: 10.1111/j.1600-0749.2007.00373.x
    [23]
    Rees J L. Genetics of hair and skin color[J]. Annual Review of Genetics, 2003, 37: 67-90. doi: 10.1146/annurev.genet.37.110801.143233
    [24]
    Buscà R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation[J]. Pigment Cell Research, 2000, 13(2): 60-69. doi: 10.1034/j.1600-0749.2000.130203.x
    [25]
    Giebel L B, Strunk K M, Spritz R A. Organization and nucleotide sequences of the human tyrosinase gene and a truncated tyrosinase-related segment[J]. Genomics, 1991, 9(3): 435-445. doi: 10.1016/0888-7543(91)90409-8
    [26]
    Hoekstra H E. Genetics, development and evolution of adaptive pigmentation in vertebrates[J]. Heredity, 2006, 97(3): 222-234. doi: 10.1038/sj.hdy.6800861
    [27]
    Jimbow K. Biological role of tyrosinase-related protein and its relevance to pigmentary disorders (vitiligo vulgaris)[J]. The Journal of Dermatology, 1999, 26(11): 734-737. doi: 10.1111/j.1346-8138.1999.tb02084.x
    [28]
    刘丽, 席冬梅, 陈亮, 等. 酪氨酸酶基因遗传变异的研究进展[J]. 中国畜牧兽医, 2010, 37(12): 115-120.

    Liu L, Xi D M, Chen L, et al. Genetic variations of the tyrosinase gene[J]. China Animal Husbandry & Veterinary Medicine, 2010, 37(12): 115-120(in Chinese).
    [29]
    Ito S, Wakamatsu K. Human hair melanins: what we have learned and have not learned from mouse coat color pigmentation[J]. Pigment Cell & Melanoma Research, 2011, 24(1): 63-74.
    [30]
    Kenny E E, Timpson N J, Sikora M, et al. Melanesian blond hair is caused by an amino acid change in TYRP1[J]. Science, 2012, 336(6081): 554. doi: 10.1126/science.1217849
    [31]
    Imes D L, Geary L A, Grahn R A, et al. Albinism in the domestic cat (Felis catus) is associated with a tyrosinase (TYR) mutation[J]. Animal Genetics, 2006, 37(2): 175-178. doi: 10.1111/j.1365-2052.2005.01409.x
    [32]
    Ito S, Wakamatsu K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review[J]. Pigment Cell Research, 2003, 16(5): 523-531. doi: 10.1034/j.1600-0749.2003.00072.x
    [33]
    Lennartsson J, Rönnstrand L. Stem cell factor receptor/c-Kit: from basic science to clinical implications[J]. Physiological Reviews, 2012, 92(4): 1619-1649. doi: 10.1152/physrev.00046.2011
    [34]
    Botchkareva N V, Khlgatian M, Longley B J, et al. SCF/c-kit signaling is required for cyclic regeneration of the hair pigmentation unit[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2001, 15(3): 645-658. doi: 10.1096/fj.00-0368com
    [35]
    Nishikawa S, Kusakabe M, Yoshinaga K, et al. In utero manipulation of coat color formation by a monoclonal anti-c-kit antibody: two distinct waves of c-kit-dependency during melanocyte development[J]. The Embo Journal, 1991, 10(8): 2111-2118. doi: 10.1002/j.1460-2075.1991.tb07744.x
    [36]
    Yoshida H, Hayashi S I, Shultz L D, et al. Neural and skin cell-specific expression pattern conferred by steel factor regulatory sequence in transgenic mice[J]. Developmental Dynamics, 1996, 207(2): 222-232. doi: 10.1002/(SICI)1097-0177(199610)207:2<222::AID-AJA10>3.0.CO;2-9
    [37]
    Goding C R. Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage[J]. Genes & Development, 2000, 14(14): 1712-1728.
    [38]
    Lister J A, Robertson C P, Lepage T, et al. Nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate[J]. Development, 1999, 126(17): 3757-3767.
    [39]
    Li S J, Wang C, Yu W H, et al. Identification of genes related to white and black plumage formation by RNA-Seq from white and black feather bulbs in ducks[J]. PLoS One, 2012, 7(5): e36592. doi: 10.1371/journal.pone.0036592
    [40]
    Ginger R S, Askew S E, Ogborne R M, et al. SLC24A5 encodes a trans-Golgi network protein with potassium-dependent sodium-calcium exchange activity that regulates human epidermal melanogenesis[J]. The Journal of Biological Chemistry, 2008, 283(9): 5486-5495. doi: 10.1074/jbc.M707521200
    [41]
    Lahola-Chomiak A A, Footz T, Nguyen-Phuoc K, et al. Non-Synonymous variants in premelanosome protein (PMEL) cause ocular pigment dispersion and pigmentary glaucoma[J]. Human Molecular Genetics, 2019, 28(8): 1298-1311. doi: 10.1093/hmg/ddy429
    [42]
    Watt B, van Niel G, Raposo G, et al. PMEL: a pigment cell-specific model for functional amyloid formation[J]. Pigment Cell & Melanoma Research, 2013, 26(3): 300-315.
    [43]
    Ishishita S, Takahashi M, Yamaguchi K, et al. Nonsense mutation in PMEL is associated with yellowish plumage colour phenotype in Japanese quail[J]. Scientific Reports, 2018, 8(1): 16732. doi: 10.1038/s41598-018-34827-4

Catalog

    Article views (1767) PDF downloads (36) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return