• ISSN 1000-0615
  • CN 31-1283/S
XU Junqi, XIE Jianping, WANG Zhijian. Diversity of microflora involved in skin ulcer and death of Andrias davidianus[J]. Journal of fisheries of china, 2022, 46(11): 2186-2195. DOI: 10.11964/jfc.20201012441
Citation: XU Junqi, XIE Jianping, WANG Zhijian. Diversity of microflora involved in skin ulcer and death of Andrias davidianus[J]. Journal of fisheries of china, 2022, 46(11): 2186-2195. DOI: 10.11964/jfc.20201012441

Diversity of microflora involved in skin ulcer and death of Andrias davidianus

Funds: National Key Research and Development Plan (2016YFC0502304); 2020 Chongqing Postdoctoral Research Project (7820100597)
More Information
  • Corresponding author:

    WANG Zhijian. E-mail: wangzj1969@126.com

  • Received Date: October 13, 2020
  • Revised Date: January 07, 2021
  • Available Online: July 03, 2022
  • Published Date: October 31, 2022
  • To explore the dynamics of microflora on diseased and healthy skin or in water samples of Andrias davidianus in natural environment, and provide microbial basis for rational aquaculture, protection of wild A. davidianus and future development of probiotics to improve the breeding of A. davidianus, in this study, the skin microflora of A. davidianus were profiled by high-throughput sequencing of the V4-V5 region of 16S rDNA gene, and the changes of skin microflora were compared between the healthy and the diseased A. davidianus. There were significant differences in the diversity, structure and function between healthy and diseased A. davidianus skin bacteria.The average number of Tag of each sample was 97 150, and the average length of sequencing was 400 bp. The OTU data showed that the microbial abundance of healthy skin was much higher than that of diseased skin. The dominant bacterium in the living water samples of healthy A. davidianus was Aliihoeflea, and after A. davidianus died, it changed to Chryseobacterium. The abundance of Chryseobacterium, Comamonas and Burkholderiales increased significantly, while that of Aliihoeflea, Exiguobacterium and Planococcus rifietoensis decreased significantly (P<0.05). Meanwhile, the skin surface of the dead Andrias davidianus had a large number of ulcers with pili, with typical symptoms of Burkella infection. Our findings confirmed that there were significant differences in skin microflora of dead and diseased A. davidianus. Burkella zoonotic bacteria might be the main cause of the death of A. davidianus in natural environment contaminated by water vector. This provided a basis for scientific breeding of A. davidianus.
  • [1]
    Turvey S T, Marr M M, Barnes I, et al. Historical museum collections clarify the evolutionary history of cryptic species radiation in the world's largest amphibians[J]. Ecology and Evolution, 2019, 9(18): 10070-10084.
    [2]
    Pei J J, Jiang L. Antimicrobial peptide from mucus of Andrias davidianus: screening and purification by magnetic cell membrane separation technique[J]. International Journal of Antimicrobial Agents, 2017, 50(1): 41-46. doi: 10.1016/j.ijantimicag.2017.02.013
    [3]
    Pei J, Chen D, Jin W, et al. Structure and mode of action of a novel antibacterial peptide from the blood of Andrias davidianus[J]. Letters in Applied Microbiology, 2019, 69(5): 312-317. doi: 10.1111/lam.13219
    [4]
    Geng Y, Wang K Y, Zhou Z Y, et al. First report of a ranavirus associated with morbidity and mortality in farmed Chinese giant salamanders (Andrias davidianus)[J]. Journal of Comparative Pathology, 2011, 145(1): 95-102. doi: 10.1016/j.jcpa.2010.11.012
    [5]
    张晗, 邓捷, 赵虎, 等. 大鲵细菌性疾病研究进展[J]. 河北渔业, 2020(3): 50-56,62. doi: 10.3969/j.issn.1004-6755.2020.03.013

    Zhang H, Deng J, Zhao H, et al. Research progress on bacterial disease of Chinese giant salamander[J]. Hebei Fisheries, 2020(3): 50-56,62 (in Chinese). doi: 10.3969/j.issn.1004-6755.2020.03.013
    [6]
    Luo Q H, Tong F, Song Y J, et al. Observation of the breeding behavior of the Chinese giant salamander (Andrias davidianus) using a digital monitoring system[J]. Animals, 2018, 8(10): 161. doi: 10.3390/ani8100161
    [7]
    陶峰勇, 王小明, 章克家. 大鲵栖息地环境的初步研究[J]. 四川动物, 2004, 23(2): 83-87. doi: 10.3969/j.issn.1000-7083.2004.02.002

    Tao F Y, Wang X M, Zhang K J. Preliminary study on characters of habitat dens and river types of Chinese giant salamander[J]. Sichuan Journal of Zoology, 2004, 23(2): 83-87 (in Chinese). doi: 10.3969/j.issn.1000-7083.2004.02.002
    [8]
    Wu Z B, Gatesoupe F J, Zhang Q Q, et al. High-throughput sequencing reveals the gut and lung prokaryotic community profiles of the Chinese giant salamander (Andrias davidianus)[J]. Molecular Biology Reports, 2019, 46(5): 5143-5154. doi: 10.1007/s11033-019-04972-8
    [9]
    Holz C, Benning J, Schaudt M, et al. Novel bioactive from Lactobacillus brevis DSM17250 to stimulate the growth of Staphylococcus epidermidis: a pilot study[J]. Beneficial Microbes, 2017, 8(1): 121-131. doi: 10.3920/BM2016.0073
    [10]
    Rintala A, Pietilä S, Munukka E, et al. Gut microbiota analysis results are highly dependent on the 16S rRNA gene target region, whereas the impact of DNA extraction is minor[J]. Journal of Biomolecular Techniques, 2017, 28(1): 19-30. doi: 10.7171/jbt.17-2801-003
    [11]
    Magoč T, Salzberg S L. FLASH: Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963. doi: 10.1093/bioinformatics/btr507
    [12]
    Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120. doi: 10.1093/bioinformatics/btu170
    [13]
    Wen C Q, Wu L Y, Qin Y J, et al. Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform[J]. PLoS One, 2017, 12(4): e0176716. doi: 10.1371/journal.pone.0176716
    [14]
    Brattgjerd S, Evensen Ø. A sequential light microscopic and ultrastructural study on the uptake and handling of Vibrio salmonicida in phagocytes of the head kidney in experimentally infected Atlantic salmon (Salmo salar L.)[J]. Veterinary Pathology, 1996, 33(1): 55-65. doi: 10.1177/030098589603300106
    [15]
    兰阿峰, 郭素芬, 彭浩, 等. 养殖大鲵肠道细菌多样性[J]. 江苏农业科学, 2019, 47(1): 146-151.

    Lan A F, Guo S F, Peng H, et al. Analysis of intestinal bacterial diversity of cultured Chinese giant salamander[J]. Jiangsu Agricultural Sciences, 2019, 47(1): 146-151 (in Chinese).
    [16]
    Reinhart E M, Korry B J, Rowan-Nash A D, et al. Defining the distinct skin and gut microbiomes of the Northern Pike (Esox lucius)[J]. Frontiers in Microbiology, 2019, 10: 2118. doi: 10.3389/fmicb.2019.02118
    [17]
    Noroy C, Meyer D F. Comparative genomics of the zoonotic pathogen Ehrlichia chaffeensis reveals candidate type IV effectors and putative host cell targets[J]. Frontiers in Cellular and Infection Microbiology, 2017, 6: 204.
    [18]
    Stincone P, Brandelli A. Marine bacteria as source of antimicrobial compounds[J]. Critical Reviews in Biotechnology, 2020, 40(3): 306-319. doi: 10.1080/07388551.2019.1710457
    [19]
    Huang H Y, Zhou P J, Chen P, et al. Alteration of the gut microbiome and immune factors of grass carp infected with Aeromonas veronii and screening of an antagonistic bacterial strain (Streptomyces flavotricini)[J]. Microbial Pathogenesis, 2020, 143: 104092. doi: 10.1016/j.micpath.2020.104092
    [20]
    Li W F, Yang H Y, Zhao Q, et al. Polyphenol-rich loquat fruit extract prevents fructose-induced nonalcoholic fatty liver disease by modulating glycometabolism, lipometabolism, oxidative stress, inflammation, intestinal barrier, and gut microbiota in mice[J]. Journal of Agricultural and Food Chemistry, 2019, 67(27): 7726-7737. doi: 10.1021/acs.jafc.9b02523
    [21]
    王欢, 李宛真, 汪弋力, 等. 高脂饮食诱导的肥胖及肥胖抵抗小鼠肠道菌群元基因组的比较研究[J]. 西安交通大学学报(医学版), 2014, 35(2): 240-244.

    Wang H, Li W Z, Wang G L, et al. Comparison of the gut microbiome metagenome in diet-induced obesity mice and diet-induced obesity resistant mice[J]. Journal of Xi’an Jiaotong University (Medical Sciences), 2014, 35(2): 240-244 (in Chinese).
    [22]
    Mukerji R, Kakarala R, Smith S J, et al. Chryseobacterium indologenes: an emerging infection in the USA[J]. BMJ Case Reports, 2016, 2016: bcr-2016-214486.
    [23]
    Loudon A H, Kurtz A, Esposito E, et al. Columbia spotted frogs (Rana luteiventris) have characteristic skin microbiota that may be shaped by cutaneous skin peptides and the environment[J]. FEMS Microbiology Ecology, 2020, 96(10): fiaa168. doi: 10.1093/femsec/fiaa168
    [24]
    Shaw J L A, Monis P, Weyrich L S, et al. Using amplicon sequencing to characterize and monitor bacterial diversity in drinking water distribution systems[J]. Applied and Environmental Microbiology, 2015, 81(18): 6463-6473. doi: 10.1128/AEM.01297-15
    [25]
    Lafontaine E R, Zimmerman S M, Shaffer T L, et al. Use of a safe, reproducible, and rapid aerosol delivery method to study infection by Burkholderia pseudomallei and Burkholderia mallei in mice[J]. PLoS One, 2013, 8(10): e76804. doi: 10.1371/journal.pone.0076804
    [26]
    Ellison S, Knapp R A, Sparagon W, et al. Reduced skin bacterial diversity correlates with increased pathogen infection intensity in an endangered amphibian host[J]. Molecular Ecology, 2019, 28(1): 127-140. doi: 10.1111/mec.14964

Catalog

    Article views (645) PDF downloads (13) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return