Citation: | XU Junqi, XIE Jianping, WANG Zhijian. Diversity of microflora involved in skin ulcer and death of Andrias davidianus[J]. Journal of fisheries of china, 2022, 46(11): 2186-2195. DOI: 10.11964/jfc.20201012441 |
[1] |
Turvey S T, Marr M M, Barnes I, et al. Historical museum collections clarify the evolutionary history of cryptic species radiation in the world's largest amphibians[J]. Ecology and Evolution, 2019, 9(18): 10070-10084.
|
[2] |
Pei J J, Jiang L. Antimicrobial peptide from mucus of Andrias davidianus: screening and purification by magnetic cell membrane separation technique[J]. International Journal of Antimicrobial Agents, 2017, 50(1): 41-46. doi: 10.1016/j.ijantimicag.2017.02.013
|
[3] |
Pei J, Chen D, Jin W, et al. Structure and mode of action of a novel antibacterial peptide from the blood of Andrias davidianus[J]. Letters in Applied Microbiology, 2019, 69(5): 312-317. doi: 10.1111/lam.13219
|
[4] |
Geng Y, Wang K Y, Zhou Z Y, et al. First report of a ranavirus associated with morbidity and mortality in farmed Chinese giant salamanders (Andrias davidianus)[J]. Journal of Comparative Pathology, 2011, 145(1): 95-102. doi: 10.1016/j.jcpa.2010.11.012
|
[5] |
张晗, 邓捷, 赵虎, 等. 大鲵细菌性疾病研究进展[J]. 河北渔业, 2020(3): 50-56,62. doi: 10.3969/j.issn.1004-6755.2020.03.013
Zhang H, Deng J, Zhao H, et al. Research progress on bacterial disease of Chinese giant salamander[J]. Hebei Fisheries, 2020(3): 50-56,62 (in Chinese). doi: 10.3969/j.issn.1004-6755.2020.03.013
|
[6] |
Luo Q H, Tong F, Song Y J, et al. Observation of the breeding behavior of the Chinese giant salamander (Andrias davidianus) using a digital monitoring system[J]. Animals, 2018, 8(10): 161. doi: 10.3390/ani8100161
|
[7] |
陶峰勇, 王小明, 章克家. 大鲵栖息地环境的初步研究[J]. 四川动物, 2004, 23(2): 83-87. doi: 10.3969/j.issn.1000-7083.2004.02.002
Tao F Y, Wang X M, Zhang K J. Preliminary study on characters of habitat dens and river types of Chinese giant salamander[J]. Sichuan Journal of Zoology, 2004, 23(2): 83-87 (in Chinese). doi: 10.3969/j.issn.1000-7083.2004.02.002
|
[8] |
Wu Z B, Gatesoupe F J, Zhang Q Q, et al. High-throughput sequencing reveals the gut and lung prokaryotic community profiles of the Chinese giant salamander (Andrias davidianus)[J]. Molecular Biology Reports, 2019, 46(5): 5143-5154. doi: 10.1007/s11033-019-04972-8
|
[9] |
Holz C, Benning J, Schaudt M, et al. Novel bioactive from Lactobacillus brevis DSM17250 to stimulate the growth of Staphylococcus epidermidis: a pilot study[J]. Beneficial Microbes, 2017, 8(1): 121-131. doi: 10.3920/BM2016.0073
|
[10] |
Rintala A, Pietilä S, Munukka E, et al. Gut microbiota analysis results are highly dependent on the 16S rRNA gene target region, whereas the impact of DNA extraction is minor[J]. Journal of Biomolecular Techniques, 2017, 28(1): 19-30. doi: 10.7171/jbt.17-2801-003
|
[11] |
Magoč T, Salzberg S L. FLASH: Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963. doi: 10.1093/bioinformatics/btr507
|
[12] |
Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120. doi: 10.1093/bioinformatics/btu170
|
[13] |
Wen C Q, Wu L Y, Qin Y J, et al. Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform[J]. PLoS One, 2017, 12(4): e0176716. doi: 10.1371/journal.pone.0176716
|
[14] |
Brattgjerd S, Evensen Ø. A sequential light microscopic and ultrastructural study on the uptake and handling of Vibrio salmonicida in phagocytes of the head kidney in experimentally infected Atlantic salmon (Salmo salar L.)[J]. Veterinary Pathology, 1996, 33(1): 55-65. doi: 10.1177/030098589603300106
|
[15] |
兰阿峰, 郭素芬, 彭浩, 等. 养殖大鲵肠道细菌多样性[J]. 江苏农业科学, 2019, 47(1): 146-151.
Lan A F, Guo S F, Peng H, et al. Analysis of intestinal bacterial diversity of cultured Chinese giant salamander[J]. Jiangsu Agricultural Sciences, 2019, 47(1): 146-151 (in Chinese).
|
[16] |
Reinhart E M, Korry B J, Rowan-Nash A D, et al. Defining the distinct skin and gut microbiomes of the Northern Pike (Esox lucius)[J]. Frontiers in Microbiology, 2019, 10: 2118. doi: 10.3389/fmicb.2019.02118
|
[17] |
Noroy C, Meyer D F. Comparative genomics of the zoonotic pathogen Ehrlichia chaffeensis reveals candidate type IV effectors and putative host cell targets[J]. Frontiers in Cellular and Infection Microbiology, 2017, 6: 204.
|
[18] |
Stincone P, Brandelli A. Marine bacteria as source of antimicrobial compounds[J]. Critical Reviews in Biotechnology, 2020, 40(3): 306-319. doi: 10.1080/07388551.2019.1710457
|
[19] |
Huang H Y, Zhou P J, Chen P, et al. Alteration of the gut microbiome and immune factors of grass carp infected with Aeromonas veronii and screening of an antagonistic bacterial strain (Streptomyces flavotricini)[J]. Microbial Pathogenesis, 2020, 143: 104092. doi: 10.1016/j.micpath.2020.104092
|
[20] |
Li W F, Yang H Y, Zhao Q, et al. Polyphenol-rich loquat fruit extract prevents fructose-induced nonalcoholic fatty liver disease by modulating glycometabolism, lipometabolism, oxidative stress, inflammation, intestinal barrier, and gut microbiota in mice[J]. Journal of Agricultural and Food Chemistry, 2019, 67(27): 7726-7737. doi: 10.1021/acs.jafc.9b02523
|
[21] |
王欢, 李宛真, 汪弋力, 等. 高脂饮食诱导的肥胖及肥胖抵抗小鼠肠道菌群元基因组的比较研究[J]. 西安交通大学学报(医学版), 2014, 35(2): 240-244.
Wang H, Li W Z, Wang G L, et al. Comparison of the gut microbiome metagenome in diet-induced obesity mice and diet-induced obesity resistant mice[J]. Journal of Xi’an Jiaotong University (Medical Sciences), 2014, 35(2): 240-244 (in Chinese).
|
[22] |
Mukerji R, Kakarala R, Smith S J, et al. Chryseobacterium indologenes: an emerging infection in the USA[J]. BMJ Case Reports, 2016, 2016: bcr-2016-214486.
|
[23] |
Loudon A H, Kurtz A, Esposito E, et al. Columbia spotted frogs (Rana luteiventris) have characteristic skin microbiota that may be shaped by cutaneous skin peptides and the environment[J]. FEMS Microbiology Ecology, 2020, 96(10): fiaa168. doi: 10.1093/femsec/fiaa168
|
[24] |
Shaw J L A, Monis P, Weyrich L S, et al. Using amplicon sequencing to characterize and monitor bacterial diversity in drinking water distribution systems[J]. Applied and Environmental Microbiology, 2015, 81(18): 6463-6473. doi: 10.1128/AEM.01297-15
|
[25] |
Lafontaine E R, Zimmerman S M, Shaffer T L, et al. Use of a safe, reproducible, and rapid aerosol delivery method to study infection by Burkholderia pseudomallei and Burkholderia mallei in mice[J]. PLoS One, 2013, 8(10): e76804. doi: 10.1371/journal.pone.0076804
|
[26] |
Ellison S, Knapp R A, Sparagon W, et al. Reduced skin bacterial diversity correlates with increased pathogen infection intensity in an endangered amphibian host[J]. Molecular Ecology, 2019, 28(1): 127-140. doi: 10.1111/mec.14964
|