• ISSN 1000-0615
  • CN 31-1283/S
LI Yanan, TANG Meizhen, LU Zhijie, LIN Li, QIN Zhendong. Mechanism of mst2 in grass carp (Ctenopharyngodon idella) during the immune response[J]. Journal of fisheries of china, 2021, 45(9): 1453-1464. DOI: 10.11964/jfc.20210312685
Citation: LI Yanan, TANG Meizhen, LU Zhijie, LIN Li, QIN Zhendong. Mechanism of mst2 in grass carp (Ctenopharyngodon idella) during the immune response[J]. Journal of fisheries of china, 2021, 45(9): 1453-1464. DOI: 10.11964/jfc.20210312685

Mechanism of mst2 in grass carp (Ctenopharyngodon idella) during the immune response

Funds: National Natural Science Foundation of China (42006115); Guangdong Province Basic and Applied Basic Research Fund Project (2020A1515110826)
More Information
  • Corresponding author:

    LIN Li. E-mail: linli@zhku.edu.cn

    QIN Zhendong. E-mail: qinzhendongsc@163.com

  • Received Date: March 13, 2021
  • Revised Date: March 29, 2021
  • Available Online: September 09, 2021
  • Published Date: August 31, 2021
  • In recent years, RNA-seq technology has been used in fish researches. The transcriptome analysis in Ctenopharyngodon idella kidney cell lines (CIK) is focused on virus, and that based on bacteria or lipopolysaccharide (LPS) is rarely reported. In order to elucidate the mechanism of mammalian sterile20-like kinase 2 (mst2) in C. idella during immune response, we analyzed and verified the transcriptome sequence of CIK incubated with LPS after being interfered with mst2 by small interfering RNA technology (siRNA). Firstly, a total of 22 374 unigenes were obtained from the original sequence data by De novo assembly, of which 21 199 genes were known and 1 175 new genes were predicted. Secondly, the analysis of unigenes expression showed that there were 38 differential genes (differentially expressed genes, DEGs) including 16 up-regulated genes and 22 down-regulated genes. Thirdly, 38 DEGs were verified by quantitative real-time PCR (qRT-PCR). The results showed that the qRT-PCR analysis was consistent with transcriptome sequencing, indicating that the transcriptome sequencing was reliable. 38 DEGs in CIK cells were mainly involved in immune metabolism pathway, containing MAPK signal pathway, endocytosis pathway, autophagy pathway and cytokine receptor interaction pathway. Moreover, after being interfered with mst2 and treated with LPS, the detection of apoptosis-related genes showed that the transcriptional levels of pro-apoptotic genes (fas, bad1, bad2, caspase-3, caspase-8 and caspase-9) were up-regulated, while the anti-apoptotic genes (bcl2) were down-regulated. Therefore, it was proved that interfering mst2 could induce cell apoptosis after LPS treatment. To sum up, mst2 can participate in the body's immune response by regulating apoptosis-related processes. The present results preliminarily clarified the molecular mechanism of mst2 in grass carp during immune response, and may provide some basic theoretical reference for the prevention and control of grass carp bacterial diseases.
  • [1]
    Shen Y B, Wang L, Fu J J, et al. Population structure, demographic history and local adaptation of the grass carp[J]. BMC Genomics, 2019, 20(1): 467. doi: 10.1186/s12864-019-5872-1
    [2]
    Lu Z J, Yang M X, Zhang K, et al. Aeromonas hydrophila infection activates death receptor apoptosis pathway in the red blood cells of grass carp (Ctenopharyngodon idellus)[J]. Aquaculture, 2021, 532: 735956. doi: 10.1016/j.aquaculture.2020.735956
    [3]
    Rao Y L, Wan Q Y, Su H, et al. ROS-induced HSP70 promotes cytoplasmic translocation of high-mobility group box 1b and stimulates antiviral autophagy in grass carp kidney cells[J]. Journal of Biological Chemistry, 2018, 293(45): 17387-17401. doi: 10.1074/jbc.RA118.003840
    [4]
    Lu Z J, Zhan F B, Yang M X, et al. The immune function of heme oxygenase-1 from grass carp (Ctenopharyngodon idellus) in response to bacterial infection[J]. Fish & Shellfish Immunology, 2021, 112: 168-178.
    [5]
    Justice R W, Zilian O, Woods D F, et al. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation[J]. Genes & Development, 1996, 9(5): 534-546.
    [6]
    Scheel H, Hofmann K. A novel inter action motif, SARAH, connects three classes of tumor suppressor[J]. Current Biology, 2003, 13(23): R899-R900. doi: 10.1016/j.cub.2003.11.007
    [7]
    Dan I, Watanabe N M, Kusumi A. The Ste20 group kinases as regulators of MAP kinase cascades[J]. Trends in Cell Biology, 2001, 11(5): 220-230. doi: 10.1016/S0962-8924(01)01980-8
    [8]
    Graves J D, Draves K E, Gotoh Y, et al. Both phosphorylation and caspase-mediated cleavage contribute to regulation of the Ste20-like protein kinase Mst1 during CD95/Fas-induced apoptosis[J]. Journal of Biological Chemistry, 2001, 276(18): 14909-14915. doi: 10.1074/jbc.M010905200
    [9]
    Chu P F, He L B, Xiong L, et al. Molecular cloning, expression analysis and localization pattern of the MST family in grass carp (Ctenopharyngodon idella)[J]. Fish & Shellfish Immunology, 2018, 76: 316-323.
    [10]
    Huang Y H, Huang X H, Yan Y, et al. Transcriptome analysis of orange-spotted grouper (Epinephelus coioides) spleen in response to Singapore grouper iridovirus[J]. BMC Genomics, 2011, 12(1): 556. doi: 10.1186/1471-2164-12-556
    [11]
    Blanca J M, Cañizares J, Ziarsolo P, et al. Melon transcriptome characterization: simple sequence repeats and single nucleotide polymorphisms discovery for high throughput genotyping across the species[J]. The Plant Genome, 2011, 4(2): 118-131. doi: 10.3835/plantgenome2011.01.0003
    [12]
    Ozsolak F, Milos P M. RNA sequencing: advances, challenges and opportunities[J]. Nature Reviews Genetics, 2011, 12(2): 87-98. doi: 10.1038/nrg2934
    [13]
    Long M, Zhao J, Li T T, et al. Transcriptomic and proteomic analyses of splenic immune mechanisms of rainbow trout (Oncorhynchus mykiss) infected by Aeromonas salmonicida subsp. salmonicida[J]. Journal of Proteomics, 2015, 122: 41-54. doi: 10.1016/j.jprot.2015.03.031
    [14]
    Polinski M P, Bradshaw J C, Inkpen S M, et al. De novo assembly of Sockeye salmon kidney transcriptomes reveal a limited early response to piscine reovirus with or without infectious hematopoietic necrosis virus superinfection[J]. BMC Genomics, 2016, 17(1): 848. doi: 10.1186/s12864-016-3196-y
    [15]
    Ye H, Xiao S J, Wang X Q, et al. Characterization of spleen transcriptome of Schizothorax prenanti during Aeromonas hydrophila Infection[J]. Marine Biotechnology, 2018, 20(2): 246-256. doi: 10.1007/s10126-018-9801-0
    [16]
    Zhu J J, Li C, Ao Q W, et al. Trancriptomic profiling revealed the signatures of acute immune response in tilapia (Oreochromis niloticus) following Streptococcus iniae challenge[J]. Fish & Shellfish Immunology, 2015, 46(2): 346-353.
    [17]
    Wang R X, Hu X C, Lü A J, et al. Transcriptome analysis in the skin of Carassius auratus challenged with Aeromonas hydrophila[J]. Fish & Shellfish Immunology, 2019, 94: 510-516.
    [18]
    Fan Z F, You F, Wang L J, et al. Gonadal transcriptome analysis of male and female olive flounder (Paralichthys olivaceus)[J]. BioMed Research International, 2014, 2014: 291067.
    [19]
    Tian C X, Li Z Y, Dong Z D, et al. Transcriptome analysis of male and female mature gonads of silver sillago (Sillago sihama)[J]. Genes, 2019, 10(2): 129. doi: 10.3390/genes10020129
    [20]
    He F X, Jiang D N, Huang Y Q, et al. Comparative transcriptome analysis of male and female gonads reveals sex-biased genes in spotted scat (Scatophagus argus)[J]. Fish Physiology and Biochemistry, 2019, 45(6): 1963-1980. doi: 10.1007/s10695-019-00693-8
    [21]
    Yang M X, Lu Z J, Li F L, et al. Escherichia coli induced ferroptosis in red blood cells of grass carp (Ctenopharyngodon idella)[J]. Fish & Shellfish Immunology, 2021, 112: 159-167.
    [22]
    Shang X Y, Yang C R, Wan Q Y, et al. The destiny of the resistance/susceptibility against GCRV is controlled by epigenetic mechanisms in CIK cells[J]. Scientific Reports, 2017, 7(1): 4551. doi: 10.1038/s41598-017-03990-5
    [23]
    Chu P F, He L B, Huang R, et al. Autophagy inhibits grass carp reovirus (GCRV) replication and protects Ctenopharyngodon idella kidney (CIK) cells from excessive inflammatory responses after GCRV infection[J]. Biomolecules, 2020, 10(9): 1296. doi: 10.3390/biom10091296
    [24]
    Chen G, He L B, Luo L F, et al. Transcriptomics sequencing provides insights into understanding the mechanism of grass carp reovirus infection[J]. International Journal of Molecular Sciences, 2018, 19(2): 488. doi: 10.3390/ijms19020488
    [25]
    Monsalve M, Olmos Y. The complex biology of FOXO[J]. Current Drug Targets, 2011, 12(9): 1322-1350. doi: 10.2174/138945011796150307
    [26]
    Klotz L O, Sánchez-Ramos C, Prieto-Arroyo I, et al. Redox regulation of FoxO transcription factors[J]. Redox Biology, 2015, 6: 51-72. doi: 10.1016/j.redox.2015.06.019
    [27]
    Choi J, Oh S, Lee D, et al. Mst1-FoxO signaling protects Naïve T lymphocytes from cellular oxidative stress in mice[J]. PLoS One, 2009, 4(11): e8011. doi: 10.1371/journal.pone.0008011
    [28]
    Cohen J J, Duke R C, Fadok V A, et al. Apoptosis and programmed cell death in immunity[J]. Annual Review of Immunology, 1992, 10: 267-293. doi: 10.1146/annurev.iy.10.040192.001411
    [29]
    Danial N N, Korsmeyer S J. Cell death: critical control points[J]. Cell, 2004, 116(2): 205-219. doi: 10.1016/S0092-8674(04)00046-7
    [30]
    DeLeo F R. Modulation of phagocyte apoptosis by bacterial pathogens[J]. Apoptosis, 2004, 9(4): 399-413. doi: 10.1023/B:APPT.0000031448.64969.fa
    [31]
    Koyama A H, Adachi A, Irie H. Physiological significance of apoptosis during animal virus infection[J]. International Reviews of Immunology, 2003, 22(5-6): 341-359. doi: 10.1080/08830180305210
    [32]
    Sokolova I M. Apoptosis in molluscan immune defense[J]. Invertebrate Survival Journal, 2009, 6(1): 49-58.
    [33]
    Locksley R M, Killeen N, Lenardo M J. The TNF and TNF receptor superfamilies: integrating mammalian biology[J]. Cell, 2001, 104(4): 487-501. doi: 10.1016/S0092-8674(01)00237-9
    [34]
    Brenner D, Mak T W. Mitochondrial cell death effectors[J]. Current Opinion in Cell Biology, 2009, 21(6): 871-877. doi: 10.1016/j.ceb.2009.09.004
    [35]
    Jiang J, Yin L, Li J Y, et al. Glutamate attenuates lipopolysaccharide-induced oxidative damage and mRNA expression changes of tight junction and defensin proteins, inflammatory and apoptosis response signaling molecules in the intestine of fish[J]. Fish & Shellfish Immunology, 2017, 70: 473-484.
    [36]
    Uraga-Tovar D I, Domínguez-López M L, Madera-Sandoval R L, et al. Generation of oxyradicals (and H2O2), mitochondrial activity and induction of apoptosis of PBMC of Cyprinus carpio treated in vivo with halomethanes and with recombinant HSP60 kDa and with LPS of Klebsiella pneumonia[J]. Immunopharmacology and Immunotoxicology, 2014, 36(5): 329-340. doi: 10.3109/08923973.2014.947034
    [37]
    Ko E Y, Cho S H, Kwon S H, et al. The roles of NF-κB and ROS in regulation of pro-inflammatory mediators of inflammation induction in LPS-stimulated zebrafish embryos[J]. Fish & Shellfish Immunology, 2017, 68: 525-529.
    [38]
    Nie J J, Yu Z X, Yao D F, et al. Litopenaeus vannamei sirtuin 6 homolog (LvSIRT6) is involved in immune response by modulating hemocytes ROS production and apoptosis[J]. Fish & Shellfish Immunology, 2020, 98: 271-284.
    [39]
    Tian X X, Zheng J W, Xu B G, et al. Optimization of extraction of bioactive peptides from monkfish (Lophius litulon) and characterization of their role in H2O2-induced lesion[J]. Marine Drugs, 2020, 18(9): 468. doi: 10.3390/md18090468
  • Related Articles

    [1]WANG Qian, WANG Chengde, LUO Minyi, LI Guo, CHE Hang, LIN Li, ZHAO Lijuan. MiR-155 regulates apoptosis induced by FC-EPS incubation via targeting the talin-1 gene in EPC[J]. Journal of fisheries of china, 2024, 48(5): 059403. DOI: 10.11964/jfc.20240214389
    [2]YU Hong, LIN Xi, LI Qi. Applications of single-cell RNA sequencing in aquaculture animals[J]. Journal of fisheries of china, 2024, 48(4): 049101. DOI: 10.11964/jfc.20231214282
    [3]FU Dongyong, ZHANG Yiran, CHU Peng, WANG Haozhe, ZHANG Kai, BI Yihui, SUN Yiru, WANG Tao, YIN Shaowu. Effects of low temperature stress on the oxidative stress, apoptosis and intestinal microbial composition in intestine of Takifugu fasciatus[J]. Journal of fisheries of china, 2024, 48(1): 019604. DOI: 10.11964/jfc.20210913087
    [4]QIN Zhendong, YANG Minxuan, LU Zhijie, SHI Fei, LI Yanan, ZHAN Fanbin, WAN Quanyuan, LI Jun, LIN Li. Mechanism of hemoglobin - mediated apoptosis in Ctenopharyngodon idella kidney cell line (CIK)[J]. Journal of fisheries of china, 2023, 47(7): 079412. DOI: 10.11964/jfc.20210512817
    [5]CHEN Kaili, LI Yulin, BAN Wenzhuo, XU Jianfei, TAN Zhimin, XU Hongyan. Cloning of dead end (dnd) gene in Chinese soft-shell turtle (Pelodiscus sinensis) and its expression in germ cells[J]. Journal of fisheries of china, 2023, 47(5): 059105. DOI: 10.11964/jfc.20220113315
    [6]GUO Xiaoli, HUANG Zhihui, MA Aijun, WANG Qingmin, XU Rongjing, LI Ming, CHEN Zhixin. Effects of thermal stress on turbot (Scophthalmus maximus) myocardial injury and apoptosis[J]. Journal of fisheries of china, 2022, 46(6): 1074-1084. DOI: 10.11964/jfc.20201112492
    [7]SUN Xue, LI Shengjie, JIANG Peng, DU Jinxing, ZHOU Jiahui, BAI Junjie. RNA sequencing to identify genes and SNP markers associated with growth traits in Ctenopharyngodon idella[J]. Journal of fisheries of china, 2021, 45(3): 333-344. DOI: 10.11964/jfc.20190911988
    [8]WANG Xue, WANG Weijun, LUO Qihao, SUN Guohua, FENG Yanwei, MA Jingjun, YANG Jianmin. Bioinformatics analysis of regulatory non-coding RNA in gonad of Crassostrea gigas[J]. Journal of fisheries of china, 2020, 44(5): 723-734. DOI: 10.11964/jfc.20190211659
    [9]GUAN Ningnan, LAN Tian, CHEN Yulong, LIU Lifang, ZHOU Fen, GAO Zexia. Establishment and characterization of bone cell line for blunt snout bream (Megalobrama amblycephala)[J]. Journal of fisheries of china, 2018, 42(4): 513-521. DOI: 10.11964/jfc.20170310756
    [10]ZHANG Yongde, PAN Chuanyan, YU Yanling, FENG Pengfei, LUO Honglin. Establishment and identification of immortalized macrophage cell line of tilapia (Oreochromis niloticus)[J]. Journal of fisheries of china, 2018, 42(3): 376-387. DOI: 10.11964/jfc.20170410798
  • Cited by

    Periodical cited type(2)

    1. 赵倩倩,孙西超,郑诚,薛程,孙盛明. 日本沼虾Bax基因克隆及其在低氧胁迫过程中的作用. 水产学报. 2024(08): 67-80 . 本站查看
    2. 童光森,张秀南,高原菊,江祖彬,陈实,张松,李想. 基于智能感官和气质联用评价白醋对草鱼脱腥效果. 食品科技. 2022(07): 277-283 .

    Other cited types(0)

Catalog

    Article views (1153) PDF downloads (28) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return