• ISSN 1000-0615
  • CN 31-1283/S
SONG Liming, REN Shiyu, ZHANG Min, SUI Hengshou. Fishing ground forecasting of bigeye tuna (Thunnus obesus) in the tropical waters of Atlantic Ocean based on ensemble learning[J]. Journal of fisheries of china, 2023, 47(4): 049306. DOI: 10.11964/jfc.20210312692
Citation: SONG Liming, REN Shiyu, ZHANG Min, SUI Hengshou. Fishing ground forecasting of bigeye tuna (Thunnus obesus) in the tropical waters of Atlantic Ocean based on ensemble learning[J]. Journal of fisheries of china, 2023, 47(4): 049306. DOI: 10.11964/jfc.20210312692

Fishing ground forecasting of bigeye tuna (Thunnus obesus) in the tropical waters of Atlantic Ocean based on ensemble learning

Funds: National key R & D projects (2020YFD0901205); Marine Fishery Resources Investigation Project of the Ministry of Agriculture and Rural Areas in 2016 (D-8006-16-8045)
More Information
  • Corresponding author:

    SONG Liming. E-mail: lmsong@shou.edu.cn

  • Received Date: December 09, 2020
  • Revised Date: June 06, 2021
  • Available Online: March 19, 2023
  • Published Date: March 31, 2023
  • In order to improve the accuracy of bigeye tuna (Thunnus obesus) fishing ground forecast model in the tropical waters of Atlantic Ocean, a series of fishery forecast models were established based on the logbook data of 13 Chinese longliners from 2013 to 2019 and the corresponding marine environment data, e.g. sea surface wind speed, chlorophyll a concentration, eddy kinetic energy, upper boundary depth of thermocline, vertical temperature, salinity and dissolved oxygen in 0-500 m water layer. T. obesus CPUE was calculated based on the logbook data. The environmental factors related to T. obesus CPUE were screened out from 29 environmental factors by correlation analysis. The non-collinear environmental factors were selected by collinearity analysis based on the variance expansion factor (VIF) and used to build the bigeye tuna fishing ground prediction models. The Spearman correlation coefficients between non-collinear environmental factors and T. obesus CPUE were calculated and used to analyze the relative importance of the environmental factors to the T. obesus CPUE. These series of prediction models, e g. K-Nearest Neighbor (KNN), Logistic Regression (LR), Classification and Regression Tree (CART), Support Vector Machine (SVM), Artificial Neural Networks (ANN), Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Stacking ensemble model (developed by KNN, RF and GBDT, STK) were built by using 75% of data and verified by using 25% of data. The time resolution of T. obesus CPUE and marine environment data was one day, and the spatial resolution was 2° × 2°. The performance of 8 models were evaluated by the area under the receiver operating characteristic curve (AUC) and prediction accuracy. The maps of the actual fishing ground and the predicted fishing ground were overlapped by ArcGIS and used to evaluate the performance of the best model. The central bigeye tuna fishing ground was determined by the nuclear density analysis tool of ArcGIS. The results show that (1) compared with the single model (KNN, LR, CART, SVM, ANN, RF and GBDT), the forecasting performance of T. obesus fishing ground of STK model was better and relatively stable. The accuracy (AUC) of the STK model, KNN, LR, CART, SVM, ANN, RF and GBDT were 81.62% (0.781), 79.44% (0.778), 72.81% (0.685), 74.84% (0.717), 73.67% (0.702), 67.70% (0.500), 80.96% (0.780), and 78.13% (0.747), respectively; (2) the distribution of central fishing ground predicted by STK model was basically consistent with the actual distribution of central fishing ground, all of them were mainly distributed in the area of 5 °N-10 °N, 33 °W-43 °W; (3) the marine environmental factors that affect the distribution of T. obesus fishing grounds in the Atlantic Ocean mainly included dissolved oxygen of 300 m layer, salinity of 500 m layer, sea surface wind speed and upper boundary depth of thermocline, and the relative importance were 13.24%, 9.12%, 9.12% and 8.81%, respectively. The results suggest that the accuracy of the STK model for T. obesus fishing ground forecast in the Atlantic Ocean is high.
  • [1]
    宋利明, 赵海龙, 谢凯, 等. 库克群岛海域海洋环境因子对大眼金枪鱼渔获率的影响[J]. 水产学报, 2015, 39(8): 1230-1241.

    Song L M, Zhao H L, Xie K, et al. Effects of environmental variables on catch rates of Thunnus obesus in waters near Cook Islands[J]. Journal of Fisheries of China, 2015, 39(8): 1230-1241 (in Chinese).
    [2]
    樊伟, 沈新强, 林明森. 大西洋大眼金枪鱼渔场、资源及环境特征的研究[J]. 海洋学报, 2003, 25(S2): 167-176.

    Fan W, Shen X Q, Lin M S. Study on resource, environment and fishing-ground of Atlantic bigeye tuna[J]. Acta Oceanologica Sinica, 2003, 25(S2): 167-176 (in Chinese).
    [3]
    杨胜龙, 张禹, 樊伟, 等. 热带印度洋大眼金枪鱼渔场时空分布与温跃层关系[J]. 中国水产科学, 2012, 19(4): 679-689.

    Yang S L, Zhang Y, Fan W, et al. Relationship between the temporal-spatial distribution of fish in bigeye tuna fishing grounds and the thermocline characteristics in the tropical Indian Ocean[J]. Journal of Fishery Sciences of China, 2012, 19(4): 679-689 (in Chinese).
    [4]
    杨胜龙, 伍玉梅, 张忭忭, 等. 中西太平洋大眼金枪鱼中心渔场时空分布与温跃层的关系[J]. 应用生态学报, 2017, 28(1): 281-290.

    Yang S L, Wu Y M, Zhang B B, et al. Relationship between fishing grounds temporal-spatial distribution of Thunnus obesus and thermocline characteristics in the Western and Central Pacific Ocean[J]. Chinese Journal of Applied Ecology, 2017, 28(1): 281-290 (in Chinese).
    [5]
    Setiawati M D, Sambah A B, Miura F, et al. Characterization of bigeye tuna habitat in the Southern Waters off Java-Bali using remote sensing data[J]. Advances in Space Research, 2015, 55(2): 732-746. doi: 10.1016/j.asr.2014.10.007
    [6]
    Schaefer K M, Fuller D W. Movements, behavior, and habitat selection of bigeye tuna (Thunnus obesus) in the eastern equatorial Pacific, ascertained through archival tags[J]. Fishery Bulletin, 2002, 100(4): 765-788.
    [7]
    周为峰, 樊伟, 崔雪森, 等. 基于贝叶斯概率的印度洋大眼金枪鱼渔场预报[J]. 渔业信息与战略, 2012, 27(3): 214-218. doi: 10.3969/j.issn.1004-8340.2012.03.006

    Zhou W F, Fan W, Cui X S, et al. Fishing ground forecasting of bigeye tuna in the Indian Ocean based on Bayesian probability model[J]. Fisheries Information & Strategy, 2012, 27(3): 214-218 (in Chinese). doi: 10.3969/j.issn.1004-8340.2012.03.006
    [8]
    杨胜龙, 周为峰, 伍玉梅, 等. 西北印度洋大眼金枪鱼渔场预报模型建立与模块开发[J]. 水产科学, 2011, 30(11): 666-672. doi: 10.3969/j.issn.1003-1111.2011.11.003

    Yang S L, Zhou W F, Wu Y M, et al. Development of predictive model and module of fishing ground for bigeye tuna, Thunnus obesus and in the Northwest Indian Ocean[J]. Fisheries Science, 2011, 30(11): 666-672 (in Chinese). doi: 10.3969/j.issn.1003-1111.2011.11.003
    [9]
    沈智宾, 陈新军, 汪金涛. 基于海表温度和海面高度的东太平洋大眼金枪鱼渔场预测[J]. 海洋科学, 2015, 39(10): 45-51. doi: 10.11759/hykx20140621002

    Shen Z B, Chen X J, Wang J T, et al. Forecasting of bigeye tuna fishing ground in the Eastern Pacific Ocean based on sea surface temperature and sea surface height[J]. Marine Sciences, 2015, 39(10): 45-51 (in Chinese). doi: 10.11759/hykx20140621002
    [10]
    冯波, 陈新军, 许柳雄. 多变量分位数回归构建印度洋大眼金枪鱼栖息地指数[J]. 广东海洋大学学报, 2009, 29(3): 48-52. doi: 10.3969/j.issn.1673-9159.2009.03.010

    Feng B, Chen X J, Xu L X, et al. Multivariate quantile regression on habitat suitability index of Thunnus obesus in the Indian Ocean[J]. Journal of Guangdong Ocean University, 2009, 29(3): 48-52 (in Chinese). doi: 10.3969/j.issn.1673-9159.2009.03.010
    [11]
    宋利明, 高攀峰, 周应祺, 等. 基于分位数回归的大西洋中部公海大眼金枪鱼栖息环境综合指数[J]. 水产学报, 2007, 31(6): 798-804.

    Song L M, Gao P F, Zhou Y Q, et al. Habitat environment integration index of Thunnus obesus in the high seas of the Central Atlantic Ocean based on the quantile regression[J]. Journal of Fisheries of China, 2007, 31(6): 798-804 (in Chinese).
    [12]
    毛江美, 陈新军, 余景. 基于神经网络的南太平洋长鳍金枪鱼渔场预报[J]. 海洋学报, 2016, 38(10): 34-43.

    Mao J M, Chen X J, Yu J. Forecasting fishing ground of Thunnus alalunga based on BP neural network in the South Pacific Ocean[J]. Acta Oceanologica Sinica, 2016, 38(10): 34-43 (in Chinese).
    [13]
    宋利明, 周建坤, 沈智宾, 等. 基于支持向量机的库克群岛海域长鳍金枪鱼栖息环境综合指数[J]. 海洋通报, 2017, 36(2): 195-208. doi: 10.11840/j.issn.1001-6392.2017.02.011

    Song L M, Zhou J K, Shen Z B, et al. An integrated habitat index for albacore tuna (Thunnus alalunga) in waters near Cook Islands based on the support vector machine method[J]. Marine Science Bulletin, 2017, 36(2): 195-208 (in Chinese). doi: 10.11840/j.issn.1001-6392.2017.02.011
    [14]
    袁红春, 陈骢昊. 基于融合深度学习模型的长鳍金枪鱼渔情预测研究[J]. 渔业现代化, 2019, 46(5): 74-81. doi: 10.3969/j.issn.1007-9580.2019.05.012

    Yuan H C, Chen C H. Prediction of Thunnus alalunga fishery based on fusion deep learning model[J]. Fishery Modernization, 2019, 46(5): 74-81 (in Chinese). doi: 10.3969/j.issn.1007-9580.2019.05.012
    [15]
    袁红春, 陈冠奇, 张天蛟, 等. 基于全卷积网络的南太平洋长鳍金枪鱼渔场预报模型[J]. 江苏农业学报, 2020, 36(2): 423-429. doi: 10.3969/j.issn.1000-4440.2020.02.024

    Yuan H C, Chen G Q, Zhang T J, et al. Fishing ground forecast model of albacore tuna based on fully convolutional networks in the South Pacific[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(2): 423-429 (in Chinese). doi: 10.3969/j.issn.1000-4440.2020.02.024
    [16]
    陈雪忠, 樊伟, 崔雪森, 等. 基于随机森林的印度洋长鳍金枪鱼渔场预报[J]. 海洋学报, 2013, 35(1): 158-164.

    Chen X Z, Fan W, Cui X S, et al. Fishing ground forecasting of Thunnus alalung in Indian Ocean based on random forest[J]. Acta Oceanologica Sinica, 2013, 35(1): 158-164 (in Chinese).
    [17]
    Wolpert D H. Stacked generalization[J]. Neural Networks, 1992, 5(2): 241-259. doi: 10.1016/S0893-6080(05)80023-1
    [18]
    罗智青, 莫汉培, 王汝辉, 等. 基于Stacking模型融合的失压故障识别算法[J]. 能源与环保, 2019, 41(2): 41-45.

    Luo Z Q, Mo H P, Wang R H, et al. Loss-of-voltage fault identification algorithm based on stacking model fusion[J]. China Energy and Environmental Protection, 2019, 41(2): 41-45 (in Chinese).
    [19]
    Feng Y J, Chen X J, Gao F, et al. Impacts of changing scale on Getis-Ord Gi* hotspots of CPUE: a case study of the neon flying squid (Ommastrephes bartramii) in the northwest Pacific Ocean[J]. Acta Oceanologica Sinica, 2018, 37(5): 67-76. doi: 10.1007/s13131-018-1212-6
    [20]
    Van de Geer J P. Multivariate analysis of categorical data: theory[J]. Journal of Marketing Research, 1995, 32(1): 111-112.
    [21]
    袁红春, 胡光亮, 陈冠奇, 等. 基于粒子群可拓的南太平洋长鳍金枪鱼产量预测方法研究[J]. 渔业现代化, 2019, 46(6): 96-103.

    Yuan H C, Hu G L, Chen G Q, et al. Research on yield prediction methods of Thunnus alalunga in South Pacific based on particle swarm extension[J]. Fishery Modernization, 2019, 46(6): 96-103 (in Chinese).
    [22]
    张天蛟. 产漂流性卵小型鱼类的生态位建模及分析[D]. 北京: 中国农业大学, 2016.

    Zhang T J. Ecological niche modeling and analysis of pelagic broadcast-spawning small fish[D]. Beijing: China Agricultural University, 2016 (in Chinese).
    [23]
    袁培森, 杨承林, 宋玉红, 等. 基于Stacking集成学习的水稻表型组学实体分类研究[J]. 农业机械学报, 2019, 50(11): 144-152. doi: 10.6041/j.issn.1000-1298.2019.11.016

    Yuan P S, Yang C L, Song Y H, et al. Classification of rice phenomics entities based on stacking ensemble learning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 144-152 (in Chinese). doi: 10.6041/j.issn.1000-1298.2019.11.016
    [24]
    侯娟, 周为峰, 樊伟, 等. 基于集成学习的南太平洋长鳍金枪鱼渔场预报模型研究[J]. 南方水产科学, 2020, 16(5): 42-50. doi: 10.12131/20200022

    Hou J, Zhou W F, Fan W, et al. Research on fishing grounds forecasting models of albacore tuna based on ensemble learning in South Pacific[J]. South China Fisheries Science, 2020, 16(5): 42-50 (in Chinese). doi: 10.12131/20200022
    [25]
    He R Y, Ke C, Moore T, et al. Mesoscale variations of sea surface temperature and ocean color patterns at the Mid-Atlantic Bight shelfbreak[J]. Geophysical Research Letters, 2010, 37(9): L09607.
    [26]
    Dormann C F, Elith J, Bacher S, et al, Collinearity: a review of methods to deal with it and a simulation study evaluating their performance[J]. Ecography, 2013, 36(1): 27-46.
    [27]
    惠守博, 王文杰. 支持向量机分类算法中多元变量共线性问题的改进[J]. 计算机工程与设计, 2006, 27(8): 1385-1388. doi: 10.3969/j.issn.1000-7024.2006.08.026

    Hui S B, Wang W J. Improvement of multi-variable's redundant attributes in classification algorithm of support vector machines[J]. Computer Engineering and Design, 2006, 27(8): 1385-1388 (in Chinese). doi: 10.3969/j.issn.1000-7024.2006.08.026
    [28]
    张玲. 多重共线性的检验及对预测目标影响程度的定量分析[J]. 通化师范学院学报, 2010, 31(4): 19-20,38. doi: 10.3969/j.issn.1008-7974.2010.04.007

    Zhang L. The test of multi-collinearity and the quantitative analysis of the degree of impact of prediction targets[J]. Journal of Tonghua Teachers College, 2010, 31(4): 19-20,38 (in Chinese). doi: 10.3969/j.issn.1008-7974.2010.04.007
    [29]
    朱国平, 李凤莹, 陈锦淘, 等. 印度洋中南部长鳍金枪鱼繁殖栖息的适应性[J]. 海洋环境科学, 2012, 31(5): 697-700,707.

    Zhu G P, Li F Y, Chen J T, et al. Spawn habitat suitability for albacore (Thunnus alaunga) in South-central Indian Ocean[J]. Marine Environmental Science, 2012, 31(5): 697-700,707 (in Chinese).
    [30]
    Pickett M H, Schwing F B. Evaluating upwelling estimates off the west coasts of North and South America[J]. Fisheries Oceanography, 2006, 15(3): 256-269. doi: 10.1111/j.1365-2419.2005.00400.x
    [31]
    Al-Jufaili S A, Piontkovski S A. Seasonal and interannual variations of yellowfin tuna catches along the Omani Shelf[J]. International Journal of Oceans and Oceanography, 2019, 13(2): 427-454.
    [32]
    赵娜, 王霄鹏, 李咏沙, 等. 黄渤海海域叶绿素a浓度时空特征分布及影响因子分析[J]. 科学技术与工程, 2020, 20(17): 7101-7107. doi: 10.3969/j.issn.1671-1815.2020.17.058

    Zhao N, Wang X P, Li Y S, et al. Temporal-spatial distribution of Chlorophyll-a and impacts of environmental factors in the Bohai Sea and Yellow Sea[J]. Science Technology and Engineering, 2020, 20(17): 7101-7107 (in Chinese). doi: 10.3969/j.issn.1671-1815.2020.17.058
    [33]
    Tussadiah A, Pranowo W S, Syamsuddin M L, et al. Characteristic of eddies kinetic energy associated with yellowfin tuna in Southern Java Indian Ocean[J]. IOP Conference Series:Earth and Environmental Science, 2018, 176(1): 012004.
    [34]
    周为峰, 黎安舟, 纪世建, 等. 基于贝叶斯分类器的南海黄鳍金枪鱼渔场预报模型[J]. 海洋湖沼通报, 2018(1): 116-122. doi: 10.13984/j.cnki.cn37-1141.2018.01.017

    Zhou W F, Li A Z, Ji S J, et al. Forecasting model for yellowfin tuna (Thunnus albacares) fishing ground in the South China Sea based on bayes classifier[J]. Transactions of Oceanology and Limnology, 2018(1): 116-122 (in Chinese). doi: 10.13984/j.cnki.cn37-1141.2018.01.017
    [35]
    Matsumoto T, Kitagawa T, Kimura S. Vertical behavior of bigeye tuna (Thunnus obesus) in the northwestern Pacific Ocean based on archival tag data[J]. Fisheries Oceanography, 2013, 22(3): 234-246. doi: 10.1111/fog.12017
    [36]
    Cayré P. Behaviour of yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelarnis) around fish aggregating devices (FADs) in the Comoros Islands as determined by ultrasonic tagging[J]. Aquat Living Resource, 1991, 4(1): 1-12. doi: 10.1051/alr/1991000
    [37]
    宋利明, 吕凯凯, 胡振新, 等. 吉尔伯特群岛海域延绳钓渔场大眼金枪鱼的环境偏好[J]. 海洋渔业, 2010, 32(4): 374-382. doi: 10.3969/j.issn.1004-2490.2010.04.005

    Song L M, Lv K K, Hu Z X, et al. Environmental preferences of Thunnus obesus near Gilbert Islands: an application to longline fishery[J]. Marine Fisheries, 2010, 32(4): 374-382 (in Chinese). doi: 10.3969/j.issn.1004-2490.2010.04.005
    [38]
    Zagaglia C R, Lorenzzetti J A, Stech J L. Remote sensing data and longline catches of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic[J]. Remote Sensing of Environment, 2004, 93(1-2): 267-281. doi: 10.1016/j.rse.2004.07.015
    [39]
    Maury O, Gascuel D, Marsac F, et al. Hierarchical interpretation of nonlinear relationships linking yellowfin tuna (Thunnus albacares) distribution to the environment in the Atlantic Ocean[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58(3): 458-469. doi: 10.1139/f00-261
    [40]
    Song L M, Zhou J, Zhou Y Q, et al. Environmental preferences of bigeye tuna, Thunnus obesus, in the Indian Ocean: An application to a longline fishery[J]. Environmental Biology of Fishes, 2009, 85(2): 153-171. doi: 10.1007/s10641-009-9474-7

Catalog

    Article views (309) PDF downloads (12) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return