Citation: | SONG Liming, REN Shiyu, ZHANG Min, SUI Hengshou. Fishing ground forecasting of bigeye tuna (Thunnus obesus) in the tropical waters of Atlantic Ocean based on ensemble learning[J]. Journal of fisheries of china, 2023, 47(4): 049306. DOI: 10.11964/jfc.20210312692 |
[1] |
宋利明, 赵海龙, 谢凯, 等. 库克群岛海域海洋环境因子对大眼金枪鱼渔获率的影响[J]. 水产学报, 2015, 39(8): 1230-1241.
Song L M, Zhao H L, Xie K, et al. Effects of environmental variables on catch rates of Thunnus obesus in waters near Cook Islands[J]. Journal of Fisheries of China, 2015, 39(8): 1230-1241 (in Chinese).
|
[2] |
樊伟, 沈新强, 林明森. 大西洋大眼金枪鱼渔场、资源及环境特征的研究[J]. 海洋学报, 2003, 25(S2): 167-176.
Fan W, Shen X Q, Lin M S. Study on resource, environment and fishing-ground of Atlantic bigeye tuna[J]. Acta Oceanologica Sinica, 2003, 25(S2): 167-176 (in Chinese).
|
[3] |
杨胜龙, 张禹, 樊伟, 等. 热带印度洋大眼金枪鱼渔场时空分布与温跃层关系[J]. 中国水产科学, 2012, 19(4): 679-689.
Yang S L, Zhang Y, Fan W, et al. Relationship between the temporal-spatial distribution of fish in bigeye tuna fishing grounds and the thermocline characteristics in the tropical Indian Ocean[J]. Journal of Fishery Sciences of China, 2012, 19(4): 679-689 (in Chinese).
|
[4] |
杨胜龙, 伍玉梅, 张忭忭, 等. 中西太平洋大眼金枪鱼中心渔场时空分布与温跃层的关系[J]. 应用生态学报, 2017, 28(1): 281-290.
Yang S L, Wu Y M, Zhang B B, et al. Relationship between fishing grounds temporal-spatial distribution of Thunnus obesus and thermocline characteristics in the Western and Central Pacific Ocean[J]. Chinese Journal of Applied Ecology, 2017, 28(1): 281-290 (in Chinese).
|
[5] |
Setiawati M D, Sambah A B, Miura F, et al. Characterization of bigeye tuna habitat in the Southern Waters off Java-Bali using remote sensing data[J]. Advances in Space Research, 2015, 55(2): 732-746. doi: 10.1016/j.asr.2014.10.007
|
[6] |
Schaefer K M, Fuller D W. Movements, behavior, and habitat selection of bigeye tuna (Thunnus obesus) in the eastern equatorial Pacific, ascertained through archival tags[J]. Fishery Bulletin, 2002, 100(4): 765-788.
|
[7] |
周为峰, 樊伟, 崔雪森, 等. 基于贝叶斯概率的印度洋大眼金枪鱼渔场预报[J]. 渔业信息与战略, 2012, 27(3): 214-218. doi: 10.3969/j.issn.1004-8340.2012.03.006
Zhou W F, Fan W, Cui X S, et al. Fishing ground forecasting of bigeye tuna in the Indian Ocean based on Bayesian probability model[J]. Fisheries Information & Strategy, 2012, 27(3): 214-218 (in Chinese). doi: 10.3969/j.issn.1004-8340.2012.03.006
|
[8] |
杨胜龙, 周为峰, 伍玉梅, 等. 西北印度洋大眼金枪鱼渔场预报模型建立与模块开发[J]. 水产科学, 2011, 30(11): 666-672. doi: 10.3969/j.issn.1003-1111.2011.11.003
Yang S L, Zhou W F, Wu Y M, et al. Development of predictive model and module of fishing ground for bigeye tuna, Thunnus obesus and in the Northwest Indian Ocean[J]. Fisheries Science, 2011, 30(11): 666-672 (in Chinese). doi: 10.3969/j.issn.1003-1111.2011.11.003
|
[9] |
沈智宾, 陈新军, 汪金涛. 基于海表温度和海面高度的东太平洋大眼金枪鱼渔场预测[J]. 海洋科学, 2015, 39(10): 45-51. doi: 10.11759/hykx20140621002
Shen Z B, Chen X J, Wang J T, et al. Forecasting of bigeye tuna fishing ground in the Eastern Pacific Ocean based on sea surface temperature and sea surface height[J]. Marine Sciences, 2015, 39(10): 45-51 (in Chinese). doi: 10.11759/hykx20140621002
|
[10] |
冯波, 陈新军, 许柳雄. 多变量分位数回归构建印度洋大眼金枪鱼栖息地指数[J]. 广东海洋大学学报, 2009, 29(3): 48-52. doi: 10.3969/j.issn.1673-9159.2009.03.010
Feng B, Chen X J, Xu L X, et al. Multivariate quantile regression on habitat suitability index of Thunnus obesus in the Indian Ocean[J]. Journal of Guangdong Ocean University, 2009, 29(3): 48-52 (in Chinese). doi: 10.3969/j.issn.1673-9159.2009.03.010
|
[11] |
宋利明, 高攀峰, 周应祺, 等. 基于分位数回归的大西洋中部公海大眼金枪鱼栖息环境综合指数[J]. 水产学报, 2007, 31(6): 798-804.
Song L M, Gao P F, Zhou Y Q, et al. Habitat environment integration index of Thunnus obesus in the high seas of the Central Atlantic Ocean based on the quantile regression[J]. Journal of Fisheries of China, 2007, 31(6): 798-804 (in Chinese).
|
[12] |
毛江美, 陈新军, 余景. 基于神经网络的南太平洋长鳍金枪鱼渔场预报[J]. 海洋学报, 2016, 38(10): 34-43.
Mao J M, Chen X J, Yu J. Forecasting fishing ground of Thunnus alalunga based on BP neural network in the South Pacific Ocean[J]. Acta Oceanologica Sinica, 2016, 38(10): 34-43 (in Chinese).
|
[13] |
宋利明, 周建坤, 沈智宾, 等. 基于支持向量机的库克群岛海域长鳍金枪鱼栖息环境综合指数[J]. 海洋通报, 2017, 36(2): 195-208. doi: 10.11840/j.issn.1001-6392.2017.02.011
Song L M, Zhou J K, Shen Z B, et al. An integrated habitat index for albacore tuna (Thunnus alalunga) in waters near Cook Islands based on the support vector machine method[J]. Marine Science Bulletin, 2017, 36(2): 195-208 (in Chinese). doi: 10.11840/j.issn.1001-6392.2017.02.011
|
[14] |
袁红春, 陈骢昊. 基于融合深度学习模型的长鳍金枪鱼渔情预测研究[J]. 渔业现代化, 2019, 46(5): 74-81. doi: 10.3969/j.issn.1007-9580.2019.05.012
Yuan H C, Chen C H. Prediction of Thunnus alalunga fishery based on fusion deep learning model[J]. Fishery Modernization, 2019, 46(5): 74-81 (in Chinese). doi: 10.3969/j.issn.1007-9580.2019.05.012
|
[15] |
袁红春, 陈冠奇, 张天蛟, 等. 基于全卷积网络的南太平洋长鳍金枪鱼渔场预报模型[J]. 江苏农业学报, 2020, 36(2): 423-429. doi: 10.3969/j.issn.1000-4440.2020.02.024
Yuan H C, Chen G Q, Zhang T J, et al. Fishing ground forecast model of albacore tuna based on fully convolutional networks in the South Pacific[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(2): 423-429 (in Chinese). doi: 10.3969/j.issn.1000-4440.2020.02.024
|
[16] |
陈雪忠, 樊伟, 崔雪森, 等. 基于随机森林的印度洋长鳍金枪鱼渔场预报[J]. 海洋学报, 2013, 35(1): 158-164.
Chen X Z, Fan W, Cui X S, et al. Fishing ground forecasting of Thunnus alalung in Indian Ocean based on random forest[J]. Acta Oceanologica Sinica, 2013, 35(1): 158-164 (in Chinese).
|
[17] |
Wolpert D H. Stacked generalization[J]. Neural Networks, 1992, 5(2): 241-259. doi: 10.1016/S0893-6080(05)80023-1
|
[18] |
罗智青, 莫汉培, 王汝辉, 等. 基于Stacking模型融合的失压故障识别算法[J]. 能源与环保, 2019, 41(2): 41-45.
Luo Z Q, Mo H P, Wang R H, et al. Loss-of-voltage fault identification algorithm based on stacking model fusion[J]. China Energy and Environmental Protection, 2019, 41(2): 41-45 (in Chinese).
|
[19] |
Feng Y J, Chen X J, Gao F, et al. Impacts of changing scale on Getis-Ord Gi* hotspots of CPUE: a case study of the neon flying squid (Ommastrephes bartramii) in the northwest Pacific Ocean[J]. Acta Oceanologica Sinica, 2018, 37(5): 67-76. doi: 10.1007/s13131-018-1212-6
|
[20] |
Van de Geer J P. Multivariate analysis of categorical data: theory[J]. Journal of Marketing Research, 1995, 32(1): 111-112.
|
[21] |
袁红春, 胡光亮, 陈冠奇, 等. 基于粒子群可拓的南太平洋长鳍金枪鱼产量预测方法研究[J]. 渔业现代化, 2019, 46(6): 96-103.
Yuan H C, Hu G L, Chen G Q, et al. Research on yield prediction methods of Thunnus alalunga in South Pacific based on particle swarm extension[J]. Fishery Modernization, 2019, 46(6): 96-103 (in Chinese).
|
[22] |
张天蛟. 产漂流性卵小型鱼类的生态位建模及分析[D]. 北京: 中国农业大学, 2016.
Zhang T J. Ecological niche modeling and analysis of pelagic broadcast-spawning small fish[D]. Beijing: China Agricultural University, 2016 (in Chinese).
|
[23] |
袁培森, 杨承林, 宋玉红, 等. 基于Stacking集成学习的水稻表型组学实体分类研究[J]. 农业机械学报, 2019, 50(11): 144-152. doi: 10.6041/j.issn.1000-1298.2019.11.016
Yuan P S, Yang C L, Song Y H, et al. Classification of rice phenomics entities based on stacking ensemble learning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 144-152 (in Chinese). doi: 10.6041/j.issn.1000-1298.2019.11.016
|
[24] |
侯娟, 周为峰, 樊伟, 等. 基于集成学习的南太平洋长鳍金枪鱼渔场预报模型研究[J]. 南方水产科学, 2020, 16(5): 42-50. doi: 10.12131/20200022
Hou J, Zhou W F, Fan W, et al. Research on fishing grounds forecasting models of albacore tuna based on ensemble learning in South Pacific[J]. South China Fisheries Science, 2020, 16(5): 42-50 (in Chinese). doi: 10.12131/20200022
|
[25] |
He R Y, Ke C, Moore T, et al. Mesoscale variations of sea surface temperature and ocean color patterns at the Mid-Atlantic Bight shelfbreak[J]. Geophysical Research Letters, 2010, 37(9): L09607.
|
[26] |
Dormann C F, Elith J, Bacher S, et al, Collinearity: a review of methods to deal with it and a simulation study evaluating their performance[J]. Ecography, 2013, 36(1): 27-46.
|
[27] |
惠守博, 王文杰. 支持向量机分类算法中多元变量共线性问题的改进[J]. 计算机工程与设计, 2006, 27(8): 1385-1388. doi: 10.3969/j.issn.1000-7024.2006.08.026
Hui S B, Wang W J. Improvement of multi-variable's redundant attributes in classification algorithm of support vector machines[J]. Computer Engineering and Design, 2006, 27(8): 1385-1388 (in Chinese). doi: 10.3969/j.issn.1000-7024.2006.08.026
|
[28] |
张玲. 多重共线性的检验及对预测目标影响程度的定量分析[J]. 通化师范学院学报, 2010, 31(4): 19-20,38. doi: 10.3969/j.issn.1008-7974.2010.04.007
Zhang L. The test of multi-collinearity and the quantitative analysis of the degree of impact of prediction targets[J]. Journal of Tonghua Teachers College, 2010, 31(4): 19-20,38 (in Chinese). doi: 10.3969/j.issn.1008-7974.2010.04.007
|
[29] |
朱国平, 李凤莹, 陈锦淘, 等. 印度洋中南部长鳍金枪鱼繁殖栖息的适应性[J]. 海洋环境科学, 2012, 31(5): 697-700,707.
Zhu G P, Li F Y, Chen J T, et al. Spawn habitat suitability for albacore (Thunnus alaunga) in South-central Indian Ocean[J]. Marine Environmental Science, 2012, 31(5): 697-700,707 (in Chinese).
|
[30] |
Pickett M H, Schwing F B. Evaluating upwelling estimates off the west coasts of North and South America[J]. Fisheries Oceanography, 2006, 15(3): 256-269. doi: 10.1111/j.1365-2419.2005.00400.x
|
[31] |
Al-Jufaili S A, Piontkovski S A. Seasonal and interannual variations of yellowfin tuna catches along the Omani Shelf[J]. International Journal of Oceans and Oceanography, 2019, 13(2): 427-454.
|
[32] |
赵娜, 王霄鹏, 李咏沙, 等. 黄渤海海域叶绿素a浓度时空特征分布及影响因子分析[J]. 科学技术与工程, 2020, 20(17): 7101-7107. doi: 10.3969/j.issn.1671-1815.2020.17.058
Zhao N, Wang X P, Li Y S, et al. Temporal-spatial distribution of Chlorophyll-a and impacts of environmental factors in the Bohai Sea and Yellow Sea[J]. Science Technology and Engineering, 2020, 20(17): 7101-7107 (in Chinese). doi: 10.3969/j.issn.1671-1815.2020.17.058
|
[33] |
Tussadiah A, Pranowo W S, Syamsuddin M L, et al. Characteristic of eddies kinetic energy associated with yellowfin tuna in Southern Java Indian Ocean[J]. IOP Conference Series:Earth and Environmental Science, 2018, 176(1): 012004.
|
[34] |
周为峰, 黎安舟, 纪世建, 等. 基于贝叶斯分类器的南海黄鳍金枪鱼渔场预报模型[J]. 海洋湖沼通报, 2018(1): 116-122. doi: 10.13984/j.cnki.cn37-1141.2018.01.017
Zhou W F, Li A Z, Ji S J, et al. Forecasting model for yellowfin tuna (Thunnus albacares) fishing ground in the South China Sea based on bayes classifier[J]. Transactions of Oceanology and Limnology, 2018(1): 116-122 (in Chinese). doi: 10.13984/j.cnki.cn37-1141.2018.01.017
|
[35] |
Matsumoto T, Kitagawa T, Kimura S. Vertical behavior of bigeye tuna (Thunnus obesus) in the northwestern Pacific Ocean based on archival tag data[J]. Fisheries Oceanography, 2013, 22(3): 234-246. doi: 10.1111/fog.12017
|
[36] |
Cayré P. Behaviour of yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelarnis) around fish aggregating devices (FADs) in the Comoros Islands as determined by ultrasonic tagging[J]. Aquat Living Resource, 1991, 4(1): 1-12. doi: 10.1051/alr/1991000
|
[37] |
宋利明, 吕凯凯, 胡振新, 等. 吉尔伯特群岛海域延绳钓渔场大眼金枪鱼的环境偏好[J]. 海洋渔业, 2010, 32(4): 374-382. doi: 10.3969/j.issn.1004-2490.2010.04.005
Song L M, Lv K K, Hu Z X, et al. Environmental preferences of Thunnus obesus near Gilbert Islands: an application to longline fishery[J]. Marine Fisheries, 2010, 32(4): 374-382 (in Chinese). doi: 10.3969/j.issn.1004-2490.2010.04.005
|
[38] |
Zagaglia C R, Lorenzzetti J A, Stech J L. Remote sensing data and longline catches of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic[J]. Remote Sensing of Environment, 2004, 93(1-2): 267-281. doi: 10.1016/j.rse.2004.07.015
|
[39] |
Maury O, Gascuel D, Marsac F, et al. Hierarchical interpretation of nonlinear relationships linking yellowfin tuna (Thunnus albacares) distribution to the environment in the Atlantic Ocean[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58(3): 458-469. doi: 10.1139/f00-261
|
[40] |
Song L M, Zhou J, Zhou Y Q, et al. Environmental preferences of bigeye tuna, Thunnus obesus, in the Indian Ocean: An application to a longline fishery[J]. Environmental Biology of Fishes, 2009, 85(2): 153-171. doi: 10.1007/s10641-009-9474-7
|