• ISSN 1000-0615
  • CN 31-1283/S
ZHANG Yuying, CHANG Yaoguang, SHEN Jingjing, CHEN Guangning, LI Ling, XUE Changhu. Expression and characterization of a porphyranase from marine bacterium Wenyingzhuangia fucanilytica and its application in compound enzymolysis of Pyropia[J]. Journal of fisheries of china, 2021, 45(7): 1202-1212. DOI: 10.11964/jfc.20210512835
Citation: ZHANG Yuying, CHANG Yaoguang, SHEN Jingjing, CHEN Guangning, LI Ling, XUE Changhu. Expression and characterization of a porphyranase from marine bacterium Wenyingzhuangia fucanilytica and its application in compound enzymolysis of Pyropia[J]. Journal of fisheries of china, 2021, 45(7): 1202-1212. DOI: 10.11964/jfc.20210512835

Expression and characterization of a porphyranase from marine bacterium Wenyingzhuangia fucanilytica and its application in compound enzymolysis of Pyropia

Funds: National Key R & D Program of China (2018YFC0311203); Fundamental Research Funds for the Central Universities (201941005)
More Information
  • Corresponding author:

    CHANG Yaoguang. E-mail: changyg@ouc.edu.cn

  • Received Date: May 11, 2021
  • Revised Date: June 19, 2021
  • Available Online: July 11, 2021
  • Published Date: June 30, 2021
  • Pyropia is one of the most commercially important marine algae. Pyropia cultivation of China ranks first in the world, but the production value remains low. Porphyran is the major polysaccharide from Pyropia. It consists of alternating 4-linked α-L-galactopyranose-6-sulfate (L6S) residues and 3-linked β-D-galactopyranose (G) residues. Porphyran and its degradation products were confirmed to have various bioactivities, which is considered as an important way to realize the high-value application of Pyropia. In order to explore the glycoside hydrolase for degrading porphyran and verify the feasibility of its application, here, a porphyranase coding gene por16B was cloned from the marine bacterium Wenyingzhuangia fucanilytica and heterologously expressed in Escherichia coli. The biochemical properties and hydrolysis patterns of the recombinant protein Por16B_Wf were characterized. Por16B_Wf exhibited maximum activity at 40 °C and pH 7.0, and it possessed stable activity under different pH conditions. Por16B_Wf hydrolyzed porphyran by an endo-acting manner. The end products of Por16B_Wf were mainly composed of porphyran disaccharides L6S-G. The subsite specificity of Por16B_Wf was clarified by glycomics strategy. It specifically hydrolyzed the β-1,4 glycosidic linkage of G-L6S, whereas it tolerated 3,6-anhydro-α-L-galactopyranose and methyl-D-galactose in subsites –2 and +2, respectively. Furthermore, Por16B_Wf was applied in the compound enzymolysis of Pyropia. Compared with the classical enzymolysis technique of Pyropia using neutral protease, the compound enzymatic hydrolysate was characterized with low viscosity (8.5 Pa·s) and high conversion rate (79.4%±0.3%) of Pyropia. Por16B_Wf could be utilized as a promising tool for the degradation of porphyran. In this study, the compound enzymolysis of Pyropia was realized for the first time, which was beneficial to the full development of Pyropia, and provided new insights into the deep-processing and high-value utilization of Pyropia.
  • [1]
    Bito T, Teng F, Watanabe F. Bioactive compounds of edible purple laver Porphyra sp. (Nori)[J]. Journal of Agricultural and Food Chemistry, 2017, 65(49): 10685-10692. doi: 10.1021/acs.jafc.7b04688
    [2]
    农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 中国渔业统计年鉴-2020[M]. 北京: 中国农业出版社, 2020.

    Ministry of Agriculture and Rural Affairs of the People's Rupublic of China, National Fisheries Technology Extension Center, China Society of Fisheries. China fisheries statistical yearbook 2020[M]. Beijing: China Agriculture Press, 2020 (in Chinese).
    [3]
    张盼盼, 杨锐, 吴小凯. 江苏省条斑紫菜产业现状调研[J]. 宁波大学学报(理工版), 2014, 27(1): 18-22.

    Zhang P P, Yang R, Wu X K. Laver industry in Jiangsu Province: investigation[J]. Journal of Ningbo University (NSEE), 2014, 27(1): 18-22(in Chinese).
    [4]
    Hehemann J H, Correc G, Barbeyron T, et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota[J]. Nature, 2010, 464(7290): 908-912. doi: 10.1038/nature08937
    [5]
    Geng L H, Wang J, Zhang Z S, et al. Structure and Bioactivities of porphyrans and oligoporphyrans[J]. Current Pharmaceutical Design, 2019, 25(11): 1163-1171. doi: 10.2174/1381612825666190430111725
    [6]
    Inoue N, Yamano N, Sakata K, et al. The sulfated polysaccharide porphyran reduces apolipoprotein B100 secretion and lipid synthesis in HepG2 cells[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(2): 447-449. doi: 10.1271/bbb.80688
    [7]
    Zhang Q B, Li N, Zhou G F, et al. In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice[J]. Pharmacological Research, 2003, 48(2): 151-155. doi: 10.1016/S1043-6618(03)00103-8
    [8]
    Kwon M J, Nam T J. Porphyran induces apoptosis related signal pathway in AGS gastric cancer cell lines[J]. Life Sciences, 2006, 79(20): 1956-1962. doi: 10.1016/j.lfs.2006.06.031
    [9]
    Hehemann J H, Correc G, Thomas F, et al. Biochemical and structural characterization of the complex agarolytic enzyme system from the marine bacterium Zobellia galactanivorans[J]. Journal of Biological Chemistry, 2012, 287(36): 30571-30584. doi: 10.1074/jbc.M112.377184
    [10]
    Zhang Y Y, Chang Y G, Shen J J, et al. Expression and characterization of a novel β-Porphyranase from marine bacterium Wenyingzhuangia fucanilytica: a biotechnological tool for degrading porphyran[J]. Journal of Agricultural and Food Chemistry, 2019, 67(33): 9307-9313. doi: 10.1021/acs.jafc.9b02941
    [11]
    Zhang Y Y, Chang Y G, Shen J J, et al. Characterization of a novel porphyranase accommodating methyl-galactoses at its subsites[J]. Journal of Agricultural and Food Chemistry, 2020, 68(26): 7032-7039. doi: 10.1021/acs.jafc.0c02404
    [12]
    Cantarel B L, Coutinho P M, Rancurel C, et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics[J]. Nucleic Acids Research, 2009, 37(S1): D233-D238.
    [13]
    Chang Y, Xue C, Tang Q, et al. Isolation and characterization of a sea cucumber fucoidan-utilizing marine bacterium[J]. Letters in Applied Microbiology, 2010, 50(3): 301-307. doi: 10.1111/j.1472-765X.2009.02792.x
    [14]
    Chen F, Chang Y G, Dong S J, et al. Wenyingzhuangia fucanilytica sp nov., a sulfated fucan utilizing bacterium isolated from shallow coastal seawater[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(9): 3270-3275. doi: 10.1099/ijsem.0.001184
    [15]
    Yin Y B, Mao X Z, Yang J C, et al. DbCAN: a web resource for automated carbohydrate-active enzyme annotation[J]. Nucleic Acids Research, 2012, 40(W1): W445-W451. doi: 10.1093/nar/gks479
    [16]
    Petersen T N, Brunak S, von Heijne G, et al. SignalP 4.0: Discriminating signal peptides from transmembrane regions[J]. Nature Methods, 2011, 8(10): 785-786. doi: 10.1038/nmeth.1701
    [17]
    Gasteiger E, Gattiker A, Hoogland C, et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis[J]. Nucleic Acids Research, 2003, 31(13): 3784-3788. doi: 10.1093/nar/gkg563
    [18]
    Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X Windows Interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 1997, 25(24): 4876-4882. doi: 10.1093/nar/25.24.4876
    [19]
    Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12): 2725-2729. doi: 10.1093/molbev/mst197
    [20]
    Altschul S F, Madden T L, Schäffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Research, 1997, 25(17): 3389-3402. doi: 10.1093/nar/25.17.3389
    [21]
    张翠玉, 薛长湖, 于龙, 等. 基于pHBH法的岩藻聚糖硫酸酯酶酶活测定方法[J]. 中国食品学报, 2013, 13(7): 200-206.

    Zhang C Y, Xue C H, Yu L, et al. Fucoidanase activity determination method on basis of pHBH method[J]. Journal of Chinese Institute of Food Science and Technology, 2013, 13(7): 200-206(in Chinese).
    [22]
    Shen J J, Chang Y G, Chen F, et al. Expression and Characterization of a -carrageenase from marine bacterium Wenyingzhuangia aestuarii OF219: a biotechnological tool for the depolymerization of -carrageenan[J]. International Journal of Biological Macromolecules, 2018, 112: 93-100. doi: 10.1016/j.ijbiomac.2018.01.075
    [23]
    Yu L, Xu X Q, Xue C H, et al. Enzymatic preparation and structural determination of oligosaccharides derived from sea cucumber (Acaudina molpadioides) fucoidan[J]. Food Chemistry, 2013, 139(1-4): 702-709. doi: 10.1016/j.foodchem.2013.01.055
    [24]
    伍宏. 紫菜复合功能饮料的研制[D]. 福州: 福建农林大学, 2011.

    Wu H. The development of laver compound functional drink[D]. Fuzhou: Fujian Agricultural and Forestry University, 2011 (in Chinese).
    [25]
    Naretto A, Fanuel M, Ropartz D, et al. The agar-specific hydrolase ZgAgaC from the marine bacterium Zobellia galactanivorans defines a new GH16 protein subfamily[J]. Journal of Biological Chemistry, 2019, 294(17): 6923-6939. doi: 10.1074/jbc.RA118.006609
    [26]
    Schultz-Johansen M, Bech P K, Hennessy R C, et al. A novel enzyme portfolio for red algal polysaccharide degradation in the marine bacterium Paraglaciecola hydrolytica S66T encoded in a sizeable polysaccharide utilization locus[J]. Frontiers in Microbiology, 2018, 9: 839. doi: 10.3389/fmicb.2018.00839
    [27]
    Przybylski C, Correc G, Fer M, et al. MALDI-TOF MS and ESI-LTQ-Orbitrap tandem mass spectrometry reveal specific porphyranase activity from a Pseudoalteromonas atlantica bacterial extract[J]. RSC Advances, 2015, 5(98): 80793-80803. doi: 10.1039/C5RA14449C
  • Related Articles

    [1]SUN Lechang, SUN Xiaoshu, LIN Duanquan, CHEN Yulei, WENG Ling, MIAO Song, CAO Minjie. Preparation of enzymatic hydrolysate of blue round scad (Decapterus maruadsi) protein isolate and its anti-retrogradation effect on rice starch[J]. Journal of fisheries of china, 2024, 48(4): 049830. DOI: 10.11964/jfc.20230313933
    [2]WANG Menghua, LI Guoli, HUANG Wenqing, ZHOU Meng, WANG Guoxia, HUANG Yanhua. Effects of plant extract compound on growth performance, serum biochemical indices, liver and intestinal health of largemouth bass (Micropterus salmoides)[J]. Journal of fisheries of china, 2022, 46(10): 1892-1901. DOI: 10.11964/jfc.20220413432
    [3]LÜ Hao, YE Yuantu, YI Haoming, SUN Fei, SHI Yaoyao, LÜ Bin, ZHOU Wei, JIANG Rong. Effects of Saccharina japonica enzymatic hydrolysis extract on the growth and hepatopancreas transcriptome of Ictalurus punctatus[J]. Journal of fisheries of china, 2021, 45(11): 1871-1885. DOI: 10.11964/jfc.20201012436
    [4]WU Yanyan, ZHAO Zhixia, LI Laihao, LIN Wanling, DENG Jianchao, YANG Xianqing. Process of optimizing compound salt agent pickled tilapia fillets by response surface methodology[J]. Journal of fisheries of china, 2019, 43(2): 532-546. DOI: 10.11964/jfc.20180111128
    [5]LIN Shimei, MA Huijia, XU Tao, CHEN Yongjun, HUANG Xianzhi. Effects of replacing fish meal with compound proteins on the growth, body composition and biochemical indices of hybrid snakehead[J]. Journal of fisheries of china, 2018, 42(5): 744-753. DOI: 10.11964/jfc.20170310770
    [6]ZENG Xianlei, WEI Baocheng, LIU Xingguo, GU Zhaojun, LU Shimin, CHE Xuan. Analysis of compound culturing pond build based on Ecopath model[J]. Journal of fisheries of china, 2018, 42(5): 711-719. DOI: 10.11964/jfc.20170410796
    [7]JIANG Jinjin, LIANG Lanlan, LIN Wanling, LIN Jinying. Research progress of characteristic volatile compounds of fish sauce[J]. Journal of fisheries of china, 2017, 41(6): 984-992. DOI: 10.11964/jfc.20170310765
    [8]DUAN Xiuxia, SHI Wenzheng, WANG Zhihe, WANG Xichang, JIANG Min. Effects of cooking and storage on the volatile compounds of Litopenaeus vannamei[J]. Journal of fisheries of china, 2017, 41(6): 971-983. DOI: 10.11964/jfc.20170310751
    [9]XIANG Zemin, QIU Xiaoting, LOU Yongjiang, YAN Xiaojun. Methodology of the preparation of enzymatic hydrolysates with antioxidant activity of skipjack tuna (Katsuwonus pelamis) swim bladder protein[J]. Journal of fisheries of china, 2017, 41(6): 962-970. DOI: 10.11964/jfc.20170110687
    [10]ZHAO Peicheng, TANG Lianxiang, YUAN Jian, CHEN Yifang, WANG Qiujuan, DING Yuting, LIU Shulai. Preparation of peptone by ultrasonic-assisted enzymatic hydrolysis of skipjack tuna (Katsuwonus pelamis) by-products[J]. Journal of fisheries of china, 2017, 41(6): 919-927. DOI: 10.11964/jfc.20161210637

Catalog

    Article views (854) PDF downloads (15) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return