• ISSN 1000-0615
  • CN 31-1283/S
KE Xiaoli, LI Qingyong, HUANG Qiubiao, WANG Miao, YI Mengmeng, LIU Zhigang, LU Maixin. Effects of planting density or proportion on water quality and bacterial microbiota in the tilapia and Houttuynia cordata aquaponics[J]. Journal of fisheries of china, 2022, 46(9): 1604-1619. DOI: 10.11964/jfc.20210512871
Citation: KE Xiaoli, LI Qingyong, HUANG Qiubiao, WANG Miao, YI Mengmeng, LIU Zhigang, LU Maixin. Effects of planting density or proportion on water quality and bacterial microbiota in the tilapia and Houttuynia cordata aquaponics[J]. Journal of fisheries of china, 2022, 46(9): 1604-1619. DOI: 10.11964/jfc.20210512871

Effects of planting density or proportion on water quality and bacterial microbiota in the tilapia and Houttuynia cordata aquaponics

Funds: Provincial Special Project for Promoting Economic Development (YueNong 2019B8); China Agriculture Research System (CARS-46)
More Information
  • Corresponding author:

    LU Maixin. E-mail: mx-lu@163.com

  • Received Date: May 24, 2021
  • Revised Date: March 06, 2022
  • Available Online: August 03, 2022
  • Published Date: August 31, 2022
  • Intensive aquaculture is generally characterized by the addition of nutritionally enriched diets. High-protein feed inputs thus lead to an inefficient use of nitrogen, and the waste of the natural resources, mostly fishmeal, from which this nitrogen originated. With increasing concentration, ammonia and nitrite can be toxic to aquatic life. Previous studies demonstrated that Houttuynia cordata floating bed could significantly reduce ammonia and nitrogen (N) in tilapia intensive aquaculture, but little information is available about the effective planting density or proportion of H. cordata and its effects on water quality and microbiota in tilapia co-culturing pond system. For this, this study constructed two aquaponic models (M1 and M2) based on H. cordata and tilapia, and respectively investigated their effects on water quality and bacterial microbiota in the tilapia intestinal tract and the pond water system. The M1 model included four density treatments (350 g/m2, 450 g/m2, 600 g/m2, and 0 g/m2): the control 0 g/m2 (no H. cordata floating bed), treatment 350 g/m2 (planting 350 g H. cordata per square meter pond water), treatment 450 g/m2, and treatment 600 g/m2. The M2 model included four cover ratio treatments: the control 0 % (with no H. cordata floating bed), treatment 5 % (growing 5% H. cordata with floating bed), treatment 10%, and treatment 15%. Results showed in the M1 model the water quality trends based on chemical oxygen demand (COD), ammonia nitrogen(NH4+-N), nitrite nitrogen (NO2--N), nitrate nitrogen (NO3--N), total nitrogen (TN), total phosphorus (TP) and ortho phosphate (PO43-P) in treatment groups were significantly lower than those in the control groups. And in the three experimental months, the effect of treatment 450 g/m2 was relatively more stable than treatments 350 g/m2 and 600 g/m2. High-throughput sequencing analysis based on α-diversity indices (Chao1, ACE, Shannon and Simpson) showed different H. cordata floating bed treatments (350 g/m2, 450 g/m2, and 600 g/m2) could significantly improve the bacterial microbiota composition and increase the bacterial microbiota diversity. And these effects were more obvious along with the extension of co-cultured time. In same month, the effects of treatments 450 g/m2 and 350 g/m2 (P<0.05) were more stable than that of treatment 600 g/m2 (P>0.05). Among different months, the effect from seasonal variation on bacterial composition of fish gut or water was greater than the effect from H. cordata floating bed. In the M2 model, results showed that the H. cordata floating bed with different cover ratios could effectively improve the pond water quality and increase the bacterial community richness and diversity in tilapia ponds and fish guts. And the effect of treatment 10% was relatively more stable. These results demonstrated that using H. cordata floating beds in aquaponics could improve the pond water quality and increase the richness and diversity of the bacterial community in tilapia ponds and in fish guts. In this study, the density 450 g/m2 was more stable than densities of 350 g/m2 and 600 g/m2, and a 10% cover ratio of H. cordata floating bed was superior to ratios of 15% and 5%. These results provide a scientific basis for the application of aquaponics based on H. cordata and tilapia.
  • [1]
    卢迈新, 黎炯, 叶星, 等. 广东与海南养殖罗非鱼无乳链球菌的分离、鉴定与特性分析[J]. 微生物学通报, 2010, 37(5): 766-774. doi: 10.13344/j.microbiol.china.2010.05.022

    Lu M X, Li J, Ye X, et al. Identification and characterizations of Streptococcus agalactiae isolated from tilapia cultured in Guangdong and Hainan Provinces[J]. Microbiology China, 2010, 37(5): 766-774 (in Chinese). doi: 10.13344/j.microbiol.china.2010.05.022
    [2]
    Nora’aini A, Mohammad A W, Jusoh A, et al. Treatment of aquaculture wastewater using ultra-low pressure asymmetric polyethersulfone (PES) membrane[J]. Desalination, 2005, 185(1-3): 317-326. doi: 10.1016/j.desal.2005.03.084
    [3]
    Chávez-Crooker P, Obreque-Contreras J. Bioremediation of aquaculture wastes[J]. Current Opinion in Biotechnology, 2010, 21(3): 313-317. doi: 10.1016/j.copbio.2010.04.001
    [4]
    La Rosa T, Mirto S, Mazzola A, et al. Benthic microbial indicators of fish farm impact in a coastal area of the Tyrrhenian Sea[J]. Aquaculture, 2004, 230(1-4): 153-167. doi: 10.1016/S0044-8486(03)00433-2
    [5]
    Magor B G. Gill histopathology of juvenile Oncorhynchus kisutch exposed to suspended wood debris[J]. Canadian Journal of Zoology, 1988, 66(10): 2164-2169. doi: 10.1139/z88-323
    [6]
    赵诣. 三株异养硝化细菌的分离、特征及其对水产养殖废水脱氮作用研究[D]. 杭州: 浙江大学, 2010.

    Zhao Y. Isolation and characteristic of three heterotrophic nitrifiers and its application in aquaculture wastewater treatment[D]. Hangzhou: Zhejiang University, 2010 (in Chinese).
    [7]
    Zhang L, Xiong D M, Li B, et al. Toxicity of ammonia and nitrite to yellow catfish (Pelteobagrus fulvidraco)[J]. Journal of Applied Ichthyology, 2012, 28(1): 82-86. doi: 10.1111/j.1439-0426.2011.01720.x
    [8]
    张延青, 李雪莹, 秦菲, 等. 大型藻类应用于循环水养殖的研究进展[J]. 粮食科技与经济, 2018, 43(10): 115-117. doi: 10.16465/j.gste.cn431252ts.20181032

    Zhang Y Q, Li X Y, Qin F, et al. Research progress on the application of macroalgae to recirculating aquaculture[J]. Grain Science and Technology and Economy, 2018, 43(10): 115-117 (in Chinese). doi: 10.16465/j.gste.cn431252ts.20181032
    [9]
    万红, 宋碧玉, 杨毅, 等. 水产养殖废水的生物处理技术及其应用[J]. 水产科技情报, 2006, 33(3): 99-103. doi: 10.3969/j.issn.1001-1994.2006.03.001

    Wan H, Song B Y, Yang Y, et al. Biological treatment technique of waste water from aquaculture and its application[J]. Fisheries Science & Technology Information, 2006, 33(3): 99-103 (in Chinese). doi: 10.3969/j.issn.1001-1994.2006.03.001
    [10]
    Miron D D S, Moraes B, Becker A G, et al. Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae)[J]. Aquaculture, 2008, 277(3-4): 192-196. doi: 10.1016/j.aquaculture.2008.02.023
    [11]
    Hargreaves J A. Nitrogen biogeochemistry of aquaculture ponds[J]. Aquaculture, 1998, 166(3-4): 181-212. doi: 10.1016/S0044-8486(98)00298-1
    [12]
    王玥, 胡义波, 姜乃澄. 氨态氮、亚硝态氮对罗氏沼虾免疫相关酶类的影响[J]. 浙江大学学报(理学版), 2005, 32(6): 698-705.

    Wang Y, Hu Y B, Jiang N C. Effects of ammonia-N and nitrite-N on immune enzymes of Macrobrachium rosenbergii[J]. Journal of Zhejiang University (Science Edition), 2005, 32(6): 698-705 (in Chinese).
    [13]
    De Holanda Cavalcante D, da Silva S R, Pinheiro P D, et al. Lab-scale periphyton-based system for fish culture[J]. Ciencia Rural, 2011, 41(12): 2177-2182. doi: 10.1590/S0103-84782011005000146
    [14]
    Richard M, Trottier C, Verdegem M C J, et al. Submersion time, depth, substrate type and sampling method as variation sources of marine periphyton[J]. Aquaculture, 2009, 295(3-4): 209-217. doi: 10.1016/j.aquaculture.2009.07.005
    [15]
    Richard M, Maurice J T, Anginot A, et al. Influence of periphyton substrates and rearing density on Liza aurata growth and production in marine nursery ponds[J]. Aquaculture, 2010, 310(1-2): 106-111. doi: 10.1016/j.aquaculture.2010.10.023
    [16]
    De Schryver P, Crab R, Defoirdt T, et al. The basics of bio-flocs technology: the added value for aquaculture[J]. Aquaculture, 2008, 277(3-4): 125-137. doi: 10.1016/j.aquaculture.2008.02.019
    [17]
    Schneider O, Sereti V, Eding E H, et al. Analysis of nutrient flows in integrated intensive aquaculture systems[J]. Aquacultural Engineering, 2005, 32(3-4): 379-401. doi: 10.1016/j.aquaeng.2004.09.001
    [18]
    Crab R, Avnimelech Y, Defoirdt T, et al. Nitrogen removal techniques in aquaculture for a sustainable production[J]. Aquaculture, 2007, 270(1-4): 1-14. doi: 10.1016/j.aquaculture.2007.05.006
    [19]
    范玲玉, 林美芬, 郑毅. 水产养殖业微生物制剂应用研究进展[J]. 食品与发酵科技, 2021, 57(1): 99-101,121. doi: 10.3969/j.issn.1674-506X.2021.01.018

    Fan L Y, Lin M F, Zheng Y. Research progress in the application of microbial preparation in aquaculture[J]. Food and Fermentation Sciences & Technology, 2021, 57(1): 99-101,121 (in Chinese). doi: 10.3969/j.issn.1674-506X.2021.01.018
    [20]
    李卫芬, 邓斌, 陈南南, 等. 芽孢杆菌对草鱼生长和肠粘膜抗氧化功能及养殖水质的影响[J]. 水生态学杂志, 2012, 33(1): 65-70.

    Li W F, Deng B, Chen N N, et al. Effects of bacillus on water quality, growth and antioxidant activity of intestinal mucosa of Ctenopharyngodon idellus[J]. Journal of Hydroecology, 2012, 33(1): 65-70 (in Chinese).
    [21]
    孟睿, 何连生, 席北斗, 等. 芽孢杆菌与硝化细菌净化水产养殖废水的试验研究[J]. 环境科学与技术, 2009, 32(11): 28-31. doi: 10.3969/j.issn.1003-6504.2009.11.007

    Meng R, He L S, Xi B D, et al. Experimental study on purifying aquaculture wastewater between bacillus and nitrifying bacteria[J]. Environmental Science & Technology, 2009, 32(11): 28-31 (in Chinese). doi: 10.3969/j.issn.1003-6504.2009.11.007
    [22]
    易弋, 黎娅, 容元平, 等. 利用微生物净化鱼塘养殖污水的研究[J]. 湖北农业科学, 2010, 49(10): 2509-2511. doi: 10.3969/j.issn.0439-8114.2010.10.054

    Yi Y, Li Y, Rong Y P, et al. Decontamination of aquaculture sewage by microorganisms[J]. Hubei Agricultural Sciences, 2010, 49(10): 2509-2511 (in Chinese). doi: 10.3969/j.issn.0439-8114.2010.10.054
    [23]
    邹俊良. 生物集成系统净化水产养殖废水的研究[D]. 杭州: 浙江大学, 2013.

    Zou J L. Study on purification of aquaculture wastewater using a biological integrated system[D]. Hangzhou: Zhejiang University, 2013 (in Chinese).
    [24]
    陈家长, 孟顺龙, 胡庚东, 等. 空心菜浮床栽培对集约化养殖鱼塘水质的影响[J]. 生态与农村环境学报, 2010, 26(2): 155-159. doi: 10.3969/j.issn.1673-4831.2010.02.011

    Chen J Z, Meng S L, Hu G D, et al. Effect of Ipomoea aquatica cultivation on artificial floating rafts on water quality of intensive aquaculture ponds[J]. Journal of Ecology and Rural Environment, 2010, 26(2): 155-159 (in Chinese). doi: 10.3969/j.issn.1673-4831.2010.02.011
    [25]
    Wang J L, Chu L B. Biological nitrate removal from water and wastewater by solid-phase denitrification process[J]. Biotechnology Advances, 2016, 34(6): 1103-1112. doi: 10.1016/j.biotechadv.2016.07.001
    [26]
    范洁群, 邹国燕, 宋祥甫, 等. 不同类型生态浮床对富营养河水脱氮效果及微生物菌群的影响[J]. 环境科学研究, 2011, 24(8): 850-856. doi: 10.13198/j.res.2011.08.18.fanjq.007

    Fan J Q, Zou G Y, Song X F, et al. Effects of FCEFB and TFB on the nitrogen removal and nitrogen cycling microbial community in a eutrophic river[J]. Research of Environmental Sciences, 2011, 24(8): 850-856 (in Chinese). doi: 10.13198/j.res.2011.08.18.fanjq.007
    [27]
    Peterson S B, Teal J M. The role of plants in ecologically engineered wastewater treatment systems[J]. Ecological Engineering, 1996, 6(1-3): 137-148. doi: 10.1016/0925-8574(95)00055-0
    [28]
    靖元孝, 杨丹菁. 风车草(Cyperu alternifolius)人工湿地系统氮去除及氮转化细菌研究[J]. 生态科学, 2004, 23(1): 89-91. doi: 10.3969/j.issn.1008-8873.2004.01.022

    Jing Y X, Yang D J. Nitrogen removal and nitrogen-transformation bacteria in Cyperus alternifolius constructed wetland[J]. Ecologic Science, 2004, 23(1): 89-91 (in Chinese). doi: 10.3969/j.issn.1008-8873.2004.01.022
    [29]
    Christianson L, Lepine C, Tsukuda S, et al. Nitrate removal effectiveness of fluidized sulfur-based autotrophic denitrification biofilters for recirculating aquaculture systems[J]. Aquacultural Engineering, 2015, 68: 10-18. doi: 10.1016/j.aquaeng.2015.07.002
    [30]
    Han H Y, Li Z K. Effects of macrophyte-associated nitrogen cycling bacteria on ANAMMOX and denitrification in river sediments in the Taihu Lake region of China[J]. Ecological Engineering, 2016, 93: 82-90. doi: 10.1016/j.ecoleng.2016.05.015
    [31]
    Zheng X F, Zhang D D, Qin J G, et al. The effect of C/N ratio on bacterial community and water quality in a mussel-fish integrated system[J]. Aquaculture Research, 2018, 49(4): 1699-1708. doi: 10.1111/are.13626
    [32]
    Canfield D E, Glazer A N, Falkowski P G. The evolution and future of earth's nitrogen cycle[J]. Science, 2010, 330(6001): 192-196. doi: 10.1126/science.1186120
    [33]
    Miao L L, Liu Z P. Microbiome analysis and-omics studies of microbial denitrification processes in wastewater treatment: Recent advances[J]. Science China Life Sciences, 2018, 61(7): 753-761. doi: 10.1007/s11427-017-9228-2
    [34]
    国家环境保护总局, 水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社, 2002.

    State Environmental Protection Administration of China, Editorial Committee of Water and Wastewater Monitoring and Analysis Methods. Determination methods for examination of water and wastewater[M]. 4th ed. Beijing: China Environmental Science Press, 2002 (in Chinese).
    [35]
    Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379-423. doi: 10.1002/j.1538-7305.1948.tb01338.x
    [36]
    Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(4): 623-656. doi: 10.1002/j.1538-7305.1948.tb00917.x
    [37]
    Simpson E H. Measurement of diversity[J]. Nature, 1949, 163(4148): 688. doi: 10.1038/163688a0
    [38]
    Chao A N, Yang M C K. Stopping rules and estimation for recapture debugging with unequal failure rates[J]. Biometrika, 1993, 80(1): 193-201. doi: 10.1093/biomet/80.1.193
    [39]
    Chao A. Nonparametric estimation of the number of classes in a population[J]. Scandinavian Journal of Statistics, 1984, 11: 265-270.
    [40]
    Bosma R H, Lacambra L, Landstra Y, et al. The financial feasibility of producing fish and vegetables through aquaponics[J]. Aquacultural Engineering, 2017, 78: 146-154. doi: 10.1016/j.aquaeng.2017.07.002
    [41]
    Greenfeld A, Becker N, Mcilwain J, et al. Economically viable aquaponics? Identifying the gap between potential and current uncertainties[J]. Review in Aquaculture 2019, 11(3): 848-862.
    [42]
    Knaus U, Palm H W. Effects of fish biology on ebb and flow aquaponical cultured herbs in northern Germany (Mecklenburg Western Pomerania)[J]. Aquaculture, 2017, 466: 51-63. doi: 10.1016/j.aquaculture.2016.09.025
    [43]
    Maucieri C, Nicoletto C, Junge R, et al. 2018. Hydroponic systems and water management in aquaponics: a review[J]. Italian Journal of Agronomy, 2018, 13(1): 1012.
    [44]
    Garg C K, Sahu N P, Shamna N, et al. Effect of dietary Houttuynia cordata leaf meal and leaf extract on the growth performance, nutrient utilization and expression of IGF-I gene in Labeo rohita[J]. Aquaculture Nutrition, 2019, 25(3): 702-711. doi: 10.1111/anu.12891
    [45]
    Sekita Y, Murakami K, Yumoto H, et al. Anti-bacterial and anti-inflammatory effects of ethanol extract from Houttuynia cordata poultice[J]. Bioscience, Biotechnology and Biochemistry, 2016, 80(6): 1205-1213. doi: 10.1080/09168451.2016.1151339
    [46]
    史丽娜, 可小丽, 刘志刚, 等. 鱼腥草浮床对养殖水质及罗非鱼非特异免疫力的影响[J]. 生态科学, 2015, 34(4): 105-113,130. doi: 10.14108/j.cnki.1008-8873.2015.04.017

    Shi L N, Ke X L, Liu Z G, et al. Effect of Houttuynia cordata floating-bed on water quality and non-specific immunity of GIFT tilapia, Oreochromis niloticus[J]. Ecological Science, 2015, 34(4): 105-113,130 (in Chinese). doi: 10.14108/j.cnki.1008-8873.2015.04.017
    [47]
    祝璟琳, 季桓涛, 肖炜, 等. 鱼腥草对无乳链球菌引起吉富罗非鱼肝脏损伤的修复作用[J]. 水产学报, 2020, 44(7): 1187-1197.

    Zhu J L, Ji H T, Xiao W, et al. Protective effects from Houttuynia cordata against Streptococcus agalactiae-induced liver injury of GIFT Oreochromis niloticus strain[J]. Journal of Fisheries of China, 2020, 44(7): 1187-1197 (in Chinese).
    [48]
    Wang A R, Ran C, Ringø E, et al. Progress in fish gastrointestinal microbiota research[J]. Reviews in Aquaculture, 2018, 10(3): 626-640. doi: 10.1111/raq.12191
    [49]
    Zheng Z C, Li T X, Zeng F F, et al. Accumulation characteristics of and removal of nitrogen and phosphorus from livestock wastewater by Polygonum hydropiper[J]. Agricultural Water Management, 2013, 117: 19-25. doi: 10.1016/j.agwat.2012.10.017
    [50]
    Nhan H T, Tai N T, Liem P T, et al. Effects of different stocking densities on growth performance of Asian swamp eel Monopterus albus, water quality and plant growth of watercress Nasturtium officinale in an aquaponic recirculating system[J]. Aquaculture, 2019, 503: 96-104. doi: 10.1016/j.aquaculture.2018.12.067
    [51]
    Zimmo O R, van der Steen N P, Gijzen H J. Nitrogen mass balance across pilot-scale algae and duckweed-based wastewater stabilisation ponds[J]. Water Research, 2004, 38(4): 913-920. doi: 10.1016/j.watres.2003.10.044
  • Related Articles

    [1]WANG Xinyang, XIA Cong, DAI Fengbin, ZHANG Yuanyuan, TANG Wenqiao, LIU Dong. Species diversity of fishes in the middle and upper reaches of the Yangtze River and impact of exotic invasions on fish communities[J]. Journal of fisheries of china, 2025, 49(2): 029308. DOI: 10.11964/jfc.20220913707
    [2]HE Zhijiang, JIA Mengxue, WANG Jinyi, YAN Xiaojun, LIAO Zhi, HE Jianyu. Differential distribution of indigenous microbiome in tissues of Mytilus coruscus[J]. Journal of fisheries of china, 2022, 46(12): 2421-2431. DOI: 10.11964/jfc.20210112577
    [3]XU Junqi, XIE Jianping, WANG Zhijian. Diversity of microflora involved in skin ulcer and death of Andrias davidianus[J]. Journal of fisheries of china, 2022, 46(11): 2186-2195. DOI: 10.11964/jfc.20201012441
    [4]CHEN Ming, FAN Manhua, XIE Ruilin, CHEN Yupei, LI Qingqing, LI Jiangtao, HUANG Yanhua, LIN Li, LIANG Rishen. Molecular phylogenetic relationship of Muraenidae species in China Sea based on 16S rRNA gene sequences[J]. Journal of fisheries of china, 2022, 46(2): 183-195. DOI: 10.11964/jfc.20201012460
    [5]ZHAO Yueji, GUO Haipeng, ZHANG Demin. Effects of different culture patterns on the intestinal microbiota of Litopenaeus vannamei[J]. Journal of fisheries of china, 2021, 45(2): 221-234. DOI: 10.11964/jfc.20200312196
    [6]JIN Ruochen, JIANG Min, SUN Shiyu, DAI Xilin, WU Hao, ZHOU Junfang, YU Zhongli, ZHANG Feng. Microbial community in Litopenaeus vannamei intestine and its aquaculture environment[J]. Journal of fisheries of china, 2020, 44(12): 2037-2054. DOI: 10.11964/jfc.20200312188
    [7]ZHU Jinyu, HAN Bei, BU Hongyi, HU Juntao, ZHANG Xin, LIU Lingjun, MIAO Shuyan. Effects of dietary soybean meal on the intestinal microbiota and metabolic enzymes activities of microbial amino acids of Channa argus[J]. Journal of fisheries of china, 2020, 44(4): 642-650. DOI: 10.11964/jfc.20181211583
    [8]HONG Bin, NIU Ben, CHEN Ping, LI Wei, LIU Haiquan, PAN Yingjie, ZHAO Yong. Diversity of gut microbiota and antibiotic resistance genes inLitopenaeus vannamei and Macrobrachium rosenbergii[J]. Journal of fisheries of china, 2019, 43(5): 1347-1358. DOI: 10.11964/jfc.20180811404
    [9]SHANG Bijiao, ZUO Zhihan, LI Wenyue, SHAO Yingchun, LIU Yichen, SUN Jinsheng. Effects of probiotics on intestinal microbial metabolism and effective action time of Litopenaeus vannamei by Biolog-ECO[J]. Journal of fisheries of china, 2019, 43(4): 1162-1170. DOI: 10.11964/jfc.20180711348
    [10]LIU Yong, CHENG Jiahua. Temporal and spatial distribution of bottom fishery biodiversity in the middle and north of the East China Sea and the south of the Yellow Sea[J]. Journal of fisheries of china, 2017, 41(8): 1223-1236. DOI: 10.11964/jfc.20160410380
  • Cited by

    Periodical cited type(3)

    1. 周东来,邝哲师,符兵,彭焕龙,杨琼,李庆荣,邢东旭,廖森泰. 养殖池塘水体原位修复技术研究进展. 广东农业科学. 2024(01): 85-96 .
    2. 孟宸宇,杨桂青,申旭红. 鱼菜共生系统主要模式及效益分析. 现代畜牧科技. 2023(08): 180-183 .
    3. 袁泉,刘永军,黄伟伟,周丽,曹祥德,周文宗. 鱼—菜共生循环水养殖系统水质指标及微生物群落多样性特征. 江西农业学报. 2023(09): 156-161+168 .

    Other cited types(0)

Catalog

    Article views (681) PDF downloads (21) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return