Citation: | WU Zhou, ZHOU Liqing, CHI Changfeng, WU Biao, SUN Xiujun, LIU Zhihong, ZHAO Dan, YU Tao, ZHENG Yanxin. Effects of southern culture pattern on population genetic structure of Haliotis discus hannai based on mitochondrial COⅠ and Cytb gene sequences[J]. Journal of fisheries of china, 2024, 48(1): 019310. DOI: 10.11964/jfc.20210812991 |
Pacific abalone (Haliotis discus hannai) is an important marine shellfish in China, which is naturally distributed in the coastal areas of Shandong Peninsula and Liaodong Peninsula, and has high economic and nutritional value. Since the 1990s, with the extensive application of hybridization technology, the cultivation industry of H. discus hannai has gradually moved from northern to southern China and developed rapidly. In 2019, the production of H. discus hannai and its hybrid offsprings in China has reached 180 000 tons. However, the process of artificial breeding and selection may reduce the genetic diversity index of species, change the genetic structure, or even cause genetic differentiation of populations. In order to explore the possible effects of cultivation patterns on the genetic structure of Pacific abalone in China in the last 30 years, 259 individuals were collected from Dalian (DL), Rongcheng (RC), Zhangzhou (ZZ), Tuoji Island (TJ), Daqin Island (DQ), and Nanhuangcheng Island (NH) , the last three island belonging to the Changshan Archipelago of China. The mitochondrial cytochrome C oxidase subunit (COⅠ) gene and cytochrome B (Cytb) gene sequences were amplified by polymerase chain reaction (PCR) and sequenced on an automatic sequencer by using forward and reverse primers. Bioedit 7.0.5, DNAsp 5.10, MEGA 6.06 and Arlequin 3.5 software were used for sequence analysis. After sequence matching and shearing, 730 bp fragment length of COⅠ and Cytb genes were obtained. The results showed that 48 mutation sites and 30 haplotypes were detected in the 730 bp COⅠ sequence of 259 individuals; the haplotype diversity of the 6 populations ranged from 0.586 to 0.897, and the nucleotide diversity was 0.0056-0.0081; 59 mutation sites and 32 haplotypes were detected in the 730 bp Cytb sequence of 259 individuals. The haplotype diversity ranged from 0.605 to 0.909 and the nucleotide diversity was 0.0077-0.0120 in the 6 populations. The results of Fst and AMOVA among populations based on COⅠ and Cytb genes showed that there was significant genetic differentiation between most populations, and the genetic variation mainly existed between individuals but within populations. The current cultivation mode of H. discus hannai enhanced the gene exchange between different populations, and the secondary contact of populations with different genetic backgrounds resulted in high haplotype diversity and nucleotide diversity in all 6 populations. Different breeding standards in different breeding populations may be an important reason for the significant genetic differentiation. The evaluation of genetic resources of six Haliotis discus hannai populations in the northern and southern China coasts conducted in this paper provides a scientific basis for the rational utilization of the resources in China and the influence of breeding modes on genetic structure.
[1] |
陈木, 卢豪魁, 陈世杰, 等. 皱纹盘鲍人工育苗的初步研究[J]. 动物学报, 1977, 23(1): 35-46.
Chen M, Lu H K, Chen S J, et al. A preliminary study on the artificial rearing of the larvae and juveniles of Haliotis discus hannai ino[J]. Acta Zoologica Sinica, 1977, 23(1): 35-46 (in Chinese).
|
[2] |
刘力源, 卢龙飞, 常丽荣, 等. 低温对南北越冬后皱纹盘鲍的影响[J]. 江苏农业科学, 2020, 48(20): 195-199. doi: 10.15889/j.issn.1002-1302.2020.20.037
Liu L Y, Lu L F, Chang L R, et al. Effect of low-temperature on Haliotis discus hannai overwintering in southern and northern coast[J]. Jiangsu Agricultural Sciences, 2020, 48(20): 195-199 (in Chinese). doi: 10.15889/j.issn.1002-1302.2020.20.037
|
[3] |
吴富村, 阙华勇, 张国范. 我国皱纹盘鲍底播增养殖历史、现状及未来发展趋势[J]. 海洋科学, 2020, 44(8): 56-68.
Wu F C, Que H Y, Zhang G F. History, current status, and future development of the Pacific abalone seed release and sea ranching in China[J]. Marine Sciences, 2020, 44(8): 56-68 (in Chinese).
|
[4] |
李元山, 牟绍敦, 冯月群, 等. 皱纹盘鲍的分布水域与种苗放流效果[J]. 海洋湖沼通报, 1997(4): 48-54. doi: 10.13984/j.cnki.cn37-1141.1997.04.009
Li Y S, Mu S D, Feng Y Q, et al. Living environment and stocking seeds of Halitotls discus hannai[J]. Transactions of Oceanology and Limnology, 1997(4): 48-54 (in Chinese). doi: 10.13984/j.cnki.cn37-1141.1997.04.009
|
[5] |
张国范, 王继红, 赵洪恩, 等. 皱纹盘鲍中国群体和日本群体的自交与杂交F1的RAPD标记[J]. 海洋与湖沼, 2002, 33(5): 484-491. doi: 10.3321/j.issn:0029-814X.2002.05.005
Zhang G F, Wang J H, Zhao H E, et al. The RAPD marker of self-bred and hybrid progeny between Chinese and Japanese populations of Haliotis discus hannai ino[J]. Oceanologia et Limnologia Sinica, 2002, 33(5): 484-491 (in Chinese). doi: 10.3321/j.issn:0029-814X.2002.05.005
|
[6] |
高祥刚, 葛陇利, 刘卫东, 等. 皱纹盘鲍野生与养殖群体遗传多样性的AFLP分析[J]. 生物技术通报, 2008(S1): 324-330. doi: 10.13560/j.cnki.biotech.bull.1985.2008.s1.079
Gao X G, Ge L L, Liu W D, et al. AFLP analysis of cultured and wild populations of abalone[J]. Biotechnology Bulletin, 2008(S1): 324-330 (in Chinese). doi: 10.13560/j.cnki.biotech.bull.1985.2008.s1.079
|
[7] |
李莉, 常林瑞, 孙振兴, 等. 皱纹盘鲍遗传多样性的RAPD分析[J]. 海洋水产研究, 2006, 27(1): 59-63.
Li L, Chang L R, Sun Z X, et al. Genetic diversity of Haliotis discus hannai as revealed by RAPD[J]. Marine Fisheries Research, 2006, 27(1): 59-63 (in Chinese).
|
[8] |
Li Q, Shu J, Yu R H, et al. Genetic variability of cultured populations of the Pacific abalone (Haliotis discus hannai Ino) in China based on microsatellites[J]. Aquaculture Research, 2007, 38(9): 981-990. doi: 10.1111/j.1365-2109.2007.01764.x
|
[9] |
林志华, 包振民, 王如才. 海洋经济贝类分子遗传标记及其应用的研究进展[J]. 中国海洋大学学报, 2007, 37(4): 533-540.
Lin Z H, Bao Z M, Wang R C. Advances in the studies on molecular genetics of marine economic shellfish[J]. Periodical of Ocean University of China, 2007, 37(4): 533-540 (in Chinese).
|
[10] |
Li Q, Shu J, Zhao C, et al. Characterization of genic microsatellite markers derived from expressed sequence tags in Pacific abalone (Haliotis discus hannai)[J]. Chinese Journal of Oceanology and Limnology, 2010, 28(1): 46-54. doi: 10.1007/s00343-010-9233-9
|
[11] |
An H S, Lee J W, Kim H C, et al. Genetic characterization of five hatchery populations of the Pacific abalone (Haliotis discus hannai) using microsatellite markers[J]. International Journal of Molecular Sciences, 2011, 12(8): 4836-4849. doi: 10.3390/ijms12084836
|
[12] |
Chen N, Luo X, Wu F C, et al. Genetic structure of different cultured populations of the Pacific abalone Haliotis discus hannai Ino inferred from microsatellite markers[J]. Journal of Shellfish Research, 2016, 35(3): 661-667. doi: 10.2983/035.035.0312
|
[13] |
Brown W M, George Jr M, Wilson A C. Rapid evolution of animal mitochondrial DNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(4): 1967-1971. doi: 10.1073/pnas.76.4.1967
|
[14] |
Brown W M, Prager E M, Wang A, et al. Mitochondrial DNA sequences of primates: tempo and mode of evolution[J]. Journal of Molecular Evolution, 1982, 18(4): 225-239. doi: 10.1007/BF01734101
|
[15] |
刘连为, 许强华, 陈新军. 基于线粒体COI和Cytb基因序列的北太平洋柔鱼种群遗传结构研究[J]. 水产学报, 2012, 36(11): 1675-1684. doi: 10.3724/SP.J.1231.2012.27955
Liu L W, Xu Q H, Chen X J. Population genetic structure of Ommastrephes bartramii in the North Pacific Ocean based on the COI and Cytb gene sequences analysis[J]. Journal of Fisheries of China, 2012, 36(11): 1675-1684 (in Chinese). doi: 10.3724/SP.J.1231.2012.27955
|
[16] |
边力, 王鹏飞, 陈四清, 等. 基于线粒体Cytb基因序列的绿鳍马面鲀6个野生群体的遗传结构分析[J]. 中国水产科学, 2018, 25(4): 827-836. doi: 10.3724/SP.J.1118.2018.18072
Bian L, Wang P F, Chen S Q, et al. Population genetic structure of Thamnaconus septentrionalis in China's coastal waters based on mitochondrial Cytb sequences[J]. Journal of Fishery Sciences of China, 2018, 25(4): 827-836 (in Chinese). doi: 10.3724/SP.J.1118.2018.18072
|
[17] |
高天翔, 毕潇潇, 赵林林, 等. 基于线粒体Cytb基因全序列的松江鲈群体遗传结构分析[J]. 水生生物学报, 2013, 37(2): 199-207. doi: 10.7541/2013.5
Gao T X, Bi X X, Zhao L L, et al. Population genetic structure of roughskin sculpin Trachidermus fasciatus based on the mitochondrial Cytb sequence[J]. Acta Hydrobiologica Sinica, 2013, 37(2): 199-207 (in Chinese). doi: 10.7541/2013.5
|
[18] |
Li Q, Park C, Endo T, et al. Loss of genetic variation at microsatellite loci in hatchery strains of the Pacific abalone (Haliotis discus hannai)[J]. Aquaculture, 2004, 235(1-4): 207-222. doi: 10.1016/j.aquaculture.2003.12.018
|
[19] |
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11): 1451-1452. doi: 10.1093/bioinformatics/btp187
|
[20] |
Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12): 2725-2729. doi: 10.1093/molbev/mst197
|
[21] |
Excoffier L, Lischer H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3): 564-567. doi: 10.1111/j.1755-0998.2010.02847.x
|
[22] |
Excoffier L, Smouse P E, Quattro J M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction Data[J]. Genetics, 1992, 131(2): 479-491. doi: 10.1093/genetics/131.2.479.s
|
[23] |
Leigh J W, Bryant D. POPART: full-feature software for haplotype network construction[J]. Methods in Ecology and Evolution, 2015, 6(9): 1110-1116. doi: 10.1111/2041-210X.12410
|
[24] |
沈浩, 刘登义. 遗传多样性概述[J]. 生物学杂志, 2001, 18(3): 4-7. doi: 10.3969/j.issn.2095-1736.2001.03.002
Shen H, Liu D Y. Summary of genetic diversity[J]. Journal of Biology, 2001, 18(3): 4-7 (in Chinese). doi: 10.3969/j.issn.2095-1736.2001.03.002
|
[25] |
胡静, 侯新远, 尹绍武, 等. 基于mtDNA CO I和Cytb基因序列对南中国海不同海域波纹唇鱼群体遗传多样性的研究[J]. 水生生物学报, 2014, 38(6): 1008-1016. doi: 10.7541/2014.149
Hu J, Hou X Y, Yin S W, et al. Genetic diversity and divergence of Cheilinus undulatus of different geographic populations of the South China Sea revealed by CO I and Cytb gene analyses[J]. Acta Hydrobiologica Sinica, 2014, 38(6): 1008-1016 (in Chinese). doi: 10.7541/2014.149
|
[26] |
Bucklin A, Smolenack S B, Bentley A M, et al. Gene flow patterns of the euphausiid, Meganyctiphanes norvegica, in the NW Atlantic based on mtDNA sequences for cytochrome b and cytochrome oxidase I[J]. Journal of Plankton Research, 1997, 19(11): 1763-1781. doi: 10.1093/plankt/19.11.1763
|
[27] |
Grant W A S, Bowen B W. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 1998, 89(5): 415-426. doi: 10.1093/jhered/89.5.415
|
[28] |
刘红艳, 熊飞, 杨东, 等. 基于细胞色素b基因的鱇浪白鱼野生群体和养殖群体遗传多样性分析[J]. 华中农业大学学报, 2011, 30(1): 94-98. doi: 10.13300/j.cnki.hnlkxb.2011.01.024
Liu H Y, Xiong F, Yang D, et al. Mitochondrial cytochrome b gene sequence diversity in wild and cultured populations of Anabarilius grahami[J]. Journal of Huazhong Agricultural University, 2011, 30(1): 94-98 (in Chinese). doi: 10.13300/j.cnki.hnlkxb.2011.01.024
|
[29] |
张仪方. 鲍的种间及群体间形态差异和遗传多样性研究[D]. 厦门: 厦门大学, 2019.
Zhang Y F. Morphological and genetic diversity among different species and populations of abalone[D]. Xiamen: Xiamen University, 2019 (in Chinese).
|
[30] |
Allendorf F W, Phelps S R. Loss of Genetic variation in a hatchery stock of cutthroat trout[J]. Transactions of the American Fisheries Society, 1980, 109(5): 537-543. doi: 10.1577/1548-8659(1980)109<537:LOGVIA>2.0.CO;2
|
[31] |
Hedgecock D, Sly F. Genetic drift and effective population sizes of hatchery-propagated stocks of the Pacific oyster, Crassostrea gigas[J]. Aquaculture, 1990, 88(1): 21-38. doi: 10.1016/0044-8486(90)90316-F
|
[32] |
束靖, 李琪, 于瑞海, 等. 皱纹盘鲍野生与养殖群体微卫星标记遗传变异研究[J]. 中国海洋大学学报, 2008, 38(1): 52-58.
Shu J, Li Q, Yu R H, et al. Microsatellites analysis on genetic variation between wild and cultured populations of Pacific abalone (Haliotis discus hannai)[J]. Periodical of Ocean University of China, 2008, 38(1): 52-58 (in Chinese).
|