Citation: | ZHANG Zhen, DONG Jianyu, SUN Xin, ZHANG Yuyang, ZHAN Qipeng, ZHANG Zonghang, SHEN Fengyuan, DING Xiayang, ZHANG Peidong, ZHANG Xiumei. Trophic structure of macrobenthos in artificial reef area of Furong Island, Laizhou Bay[J]. Journal of fisheries of china, 2023, 47(9): 099305. DOI: 10.11964/jfc.20210913067 |
Artificial reef is an effective measure for improving benthic habitat, macrobenthos diversity, and richness. Its ecological effects are closely related to the duration of placement. In order to explore the effect of reef construction duration on the trophic relationship of macrobenthos, this study applied stable isotope techniques to compare the carbon and nitrogen stable isotope compositions of macrobenthos and their food sources in artificial reef areas of different ages and control areas in the coastal waters of Furong Island, Laizhou. In addition, the food bases and trophic levels of macrobenthos in different areas were also calculated. The results showed that: ① The δ13C values of macrobenthos in long-age reef area, short-age reef area and control area ranged from −25.08‰-−13.34‰, −25.86‰-−17.80‰, and −25.39‰-−11.06‰, respectively. The corresponded δ15N values ranged from 10.73‰-15.78‰, 10.02‰-14.89‰, and 10.17‰-15.80‰, respectively. ② Compared to short-age reef and control area, the macrobenthos community in the long-age reef area has higher trophic diversity, higher diversity of food sources, more diverse trophic niches within the community and better stability of community structure. ③ According to feeding habits, macrobenthos can be divided into four functional groups, namely planktonophagous group (Pl), carnivorous group (C), detritivorous group (D) and omnivorous group (O). Among the four potential food sources (phytoplankton, zooplankton, particulate organic matter (POM) and sediment organic matter (SOM)), phytoplankton had the highest average contribution (31.40%) to the three types of consumers, except for carnivorous group. ④ The trophic levels of consumers in long-age reef , short-age reef , and control area were 2.00–3.83, 2.00–3.49 and 2.00–3.87, respectively. In addition, higher trophic level predators were observed in long-age reef area, implying more complex trophic structure in long-age reef area than that of other areas. The results of this study showed that the construction of artificial reefs could enhance the utilization of carbon sources of phytoplankton by macrobenthos, increase the trophic diversity and richness of macrobenthos community, and increase the numbers of higher trophic animals in the community. The results of this study contribute to the existing knowledge for understanding the ecological effects of artificial reef construction and provide basic information for further studies on the material cycle and energy flow of benthic food web.
[1] |
韩洁, 张志南, 于子山. 渤海大型底栖动物丰度和生物量的研究[J]. 青岛海洋大学学报(自然科学版), 2001, 31(6): 889-896. doi: 10.3969/j.issn.1672-5174.2001.06.011
Han J, Zhang Z N, Yu Z S. Study on the macrobenthic abundance and biomass in Bohai Sea[J]. Journal of Ocean University of Qingdao (Natural Science Edition), 2001, 31(6): 889-896 (in Chinese). doi: 10.3969/j.issn.1672-5174.2001.06.011
|
[2] |
任彬彬, 袁伟, 孙坚强, 等. 莱州湾金城海域鱼礁投放后大型底栖动物群落变化[J]. 应用生态学报, 2015, 26(6): 1863-1870.
Ren B B, Yuan W, Sun J Q, et al. Impact of artificial reef on community of macrobenthos in Jincheng area of Laizhou Bay, China[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1863-1870 (in Chinese).
|
[3] |
张硕, 高世科, 于雯雯, 等. 碳、氮稳定同位素在构建海洋食物网及生态系统群落结构中的研究进展[J]. 水产养殖, 2019, 40(7): 6-10.
Zhang S, Gao S K, Yu W W, et al. Research progress of stable carbon and nitrogen isotopes in the construction of marine food web and ecosystem community structure[J]. Journal of Aquaculture, 2019, 40(7): 6-10 (in Chinese).
|
[4] |
高小迪, 陈新军, 李云凯. 水生食物网研究方法的发展和应用[J]. 中国水产科学, 2018, 25(6): 1347-1360. doi: 10.3724/SP.J.1118.2018.17334
Gao X D, Chen X J, Li Y K. A review on the methods used in aquatic food web research: development and applications[J]. Journal of Fishery Sciences of China, 2018, 25(6): 1347-1360 (in Chinese). doi: 10.3724/SP.J.1118.2018.17334
|
[5] |
Monteiro P, James A G, Sholto-Douglas A D, et al. The δ13C trophic position isotope spectrum as a tool to define and quantify carbon pathways in marine food webs[J]. Marine Ecology Progress, 1991, 78(1): 33-40.
|
[6] |
Abend A G, Smith T D. Differences in stable isotope ratios of carbon and nitrogen between long-finned pilot whales (Globicephala melas) and their primary prey in the western north Atlantic[J]. Ices Journal of Marine Science, 1997(3): 3.
|
[7] |
Machás R, Santos R. Sources of organic matter in Ria Formosa revealed by stable isotope analysis[J]. Acta Oecologica (Montrouge), 1999, 20(4): 463-469. doi: 10.1016/S1146-609X(99)00122-8
|
[8] |
张波, 袁伟, 戴芳群. 应用稳定同位素技术研究崂山湾夏季鱼类群落的摄食生态[J]. 水产学报, 2016, 40(4): 585-594.
Zhang B, Yuan W, Dai F Q. Study on feeding ecology of fish community in Laoshan Bay during summer using stable carbon and nitrogen isotopes[J]. Journal of Fisheries of China, 2016, 40(4): 585-594 (in Chinese).
|
[9] |
田甲申, 韩家波, 鹿志创, 等. 大连海域食物网连续营养谱[J]. 应用生态学报, 2018, 29(1): 300-308.
Tian J S, Han J B, Lu Z C, et al. The continuous trophic spectrum of food web in Dalian marine area, China[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 300-308 (in Chinese).
|
[10] |
Caputi S S, Careddu G, Calizza E, et al. Seasonal food web dynamics in the Antarctic Benthos of Tethys Bay (Ross Sea): implications for biodiversity persistence under different seasonal Sea-Ice coverage[J]. Frontiers in Marine Science, 2021: 8.
|
[11] |
刘春云, 姜少玉, 宋博, 等. 烟台养马岛潮间带大型底栖动物食物网结构特征[J]. 海洋与湖沼, 2020, 51(3): 467-476.
Liu C Y, Jiang S Y, Song B, et al. Food web structrue of macrobenthos in the intertidal zone of Yangma Island, Yantai, China[J]. Oceanologia Et Limnologia Sinica, 2020, 51(3): 467-476 (in Chinese).
|
[12] |
刘晓收, 倪大朋, 钟鑫, 等. 黄海大型底栖动物食物网结构和营养关系研究[J]. 中国海洋大学学报(自然科学版), 2020, 50(9): 20-33.
Liu X S, Ni D P, Zhong X, et al. Structure of benthic food web and trophic relationship of macrofauna in the Yellow Sea[J]. Periodical of Ocean University of China, 2020, 50(9): 20-33 (in Chinese).
|
[13] |
Lee I O, Noh J, Lee J, et al. Stable isotope signatures reveal the significant contributions of microphytobenthos and saltmarsh-driven nutrition in the intertidal benthic food webs[J]. Science of the Total Environment, 2021, 756: 144068. doi: 10.1016/j.scitotenv.2020.144068
|
[14] |
盖珊珊, 赵文溪, 宋静静, 等. 小黑山岛人工鱼礁区许氏平鲉和大泷六线鱼的营养生态位研究[J]. 生态学报, 2019, 39(18): 6923-6931.
Gai S S, Zhao W X, Song J J, et al. Study on trophic niches of Sebastes schlegelii and Hexagrammos otakii in theartificial reef area of Xiaoheishan Island[J]. Acta Ecologica Sinica, 2019, 39(18): 6923-6931 (in Chinese).
|
[15] |
魏虎进, 朱小明, 纪雅宁, 等. 基于稳定同位素技术的象山港海洋牧场区食物网基础与营养级的研究[J]. 应用海洋学学报, 2013, 32(2): 250-257. doi: 10.3969/J.ISSN.2095-4972.2013.02.015
Wei H J, Zhu X M, Ji Y N, et al. Study on the food web structure and their trophic levels of marine ranching area in Xiangshan Harbor[J]. Journal of Applied Oceanography, 2013, 32(2): 250-257 (in Chinese). doi: 10.3969/J.ISSN.2095-4972.2013.02.015
|
[16] |
谢斌, 李云凯, 张虎, 等. 基于稳定同位素技术的海州湾海洋牧场食物网基础及营养结构的季节性变化[J]. 应用生态学报, 2017, 28(7): 2292-2298.
Xie B, Li Y K, Zhang H, et al. Food web foundation and seasonal variation of trophic structure based on the stable isotopic technique in the marine ranching of Haizhou Bay, China[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2292-2298 (in Chinese).
|
[17] |
林会洁, 秦传新, 黎小国, 等. 柘林湾海洋牧场不同功能区食物网结构[J]. 水产学报, 2018, 42(7): 1026-1039.
Lin H J, Qin C X, Li X G, et al. Food web analysis in Zhelin Bay marine ranching[J]. Journal of Fisheries of China, 2018, 42(7): 1026-1039 (in Chinese).
|
[18] |
张博伦, 郭彪, 于莹, 等. 基于稳定同位素技术的天津大神堂海域人工鱼礁区食物网结构研究[J]. 渔业科学进展, 2019, 40(6): 25-35.
Zhang B L, Guo B, Yu Y, et al. Study of the food-web structure in the Dashentang artificial reef area in Tianjin using a stable isotope technique[J]. Progress in Fishery Sciences, 2019, 40(6): 25-35 (in Chinese).
|
[19] |
Zanden M J V. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies[J]. Limnology and Oceanography, 2001, 46(8): 2061. doi: 10.4319/lo.2001.46.8.2061
|
[20] |
李凡. 莱州湾4种大型甲壳类的空间与营养生态位[J]. 水产学报, 2021, 45(8): 1384-1394.
Li F. Niches of four large crustacean species in Laizhou Bay[J]. Journal of Fisheries of China, 2021, 45(8): 1384-1394 (in Chinese).
|
[21] |
Jackson A L, Inger R, Parnell A C, et al. Comparing isotopic niche widths among and within communities: siber - stable isotope bayesian ellipses in R[J]. Journal of Animal Ecology, 2011, 80(3): 595-602. doi: 10.1111/j.1365-2656.2011.01806.x
|
[22] |
Core R, Rdct R, Team R, et al. A language and environment for statistical computing[J]. Computing, 2015, 1: 12-21.
|
[23] |
Zhang R L, Zhang H, Liu H, et al. Differences in trophic structure and trophic pathways between artificial reef and natural reef ecosystems along the coast of the North Yellow Sea, China, based on stable isotope analyses[J]. Ecological Indicators, 2021, 125: 107476. doi: 10.1016/j.ecolind.2021.107476
|
[24] |
蔡星媛, 张秀梅, 刘旭绪, 等. 筏式和底播增养殖模式下魁蚶食物来源的比较研究[J]. 中国水产科学, 2016, 23(6): 1368-1379.
Cai X Y, Zhang X M, Liu X X, et al. Comparative study of food sources of Anadara broughtonii in raft mariculture and bottom sowing proliferation[J]. Journal of Fishery Sciences of China, 2016, 23(6): 1368-1379 (in Chinese).
|
[25] |
蒋日进, 章守宇, 王凯, 等. 枸杞岛近岸海域食物网的稳定同位素分析[J]. 生态学杂志, 2014, 33(4): 930-938.
Jiang R J, Zhang S Y, Wang K, et al. Stable isotope analysis of the offshore food web of Gouqi Island[J]. Chinese Journal of Ecology, 2014, 33(4): 930-938 (in Chinese).
|
[26] |
莫宝霖, 等. 基于碳、氮稳定同位素技术的大亚湾紫海胆食性分析[J]. 中国水产科学, 2017, 24(3): 566-575. doi: 10.3724/SP.J.1118.2017.16278
Mo B L, et al. Feeding habits of the purple sea urchin Heliocidaris crassispina based on stable carbon and nitrogen isotope analysis[J]. Journal of Fishery Sciences of China, 2017, 24(3): 566-575 (in Chinese). doi: 10.3724/SP.J.1118.2017.16278
|
[27] |
Thornton S F, Mcmanus J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland[J]. Estuar Coast Shelf, 1994, 38(3): 219-233. doi: 10.1006/ecss.1994.1015
|
[28] |
Harmelin-Vivien M, Loizeau V, Mellon C, et al. Comparison of C and N stable isotope ratios between surface particulate organic matter and microphytoplankton in the Gulf of Lions (NW Mediterranean)[J]. Continental Shelf Research, 2008, 28(15): 1911-1919. doi: 10.1016/j.csr.2008.03.002
|
[29] |
Briand M J, Bonnet X, Goiran C, et al. Major sources of organic matter in a complex coral reef lagoon: identification from isotopic signatures (δ13C and δ15N)[J]. Plos One, 2015, 10(7): e131555.
|
[30] |
Zhang Y, Lu X Q, Liu H L, et al. Identifying the sources of organic matter in marine and riverine sediments of Bohai Bay and its catchment using carbon and nitrogen stable isotopes[J]. Chinese Journal of Oceanology and Limnology, 2015, 33(1): 204-209. doi: 10.1007/s00343-015-4068-z
|
[31] |
林军, 章守宇. 人工鱼礁物理稳定性及其生态效应的研究进展[J]. 海洋渔业, 2006, 28(3): 257-262. doi: 10.3969/j.issn.1004-2490.2006.03.015
Lin J, Zhang S Y. Research advances on physical stability and ecological effects of artificial reef[J]. Marine Fisheries, 2006, 28(3): 257-262 (in Chinese). doi: 10.3969/j.issn.1004-2490.2006.03.015
|
[32] |
张艳, 陈聚法, 过锋, 等. 莱州人工鱼礁海域水质状况的变化特征[J]. 渔业科学进展, 2013, 34(5): 1-7. doi: 10.3969/j.issn.1000-7075.2013.05.001
Zhang Y, Chen J F, Guo F, et al. Variation of seawater quality at the artificial reef area in Laizhou Bay[J]. Progress in Fishery Sciences, 2013, 34(5): 1-7 (in Chinese). doi: 10.3969/j.issn.1000-7075.2013.05.001
|
[33] |
任彬彬. 莱州湾金城海域鱼礁投放后大型底栖动物群落变化[J]. 应用生态学报, 2015, 26(6): 1863-1870. doi: 10.1016/j.watres.2013.04.014
Hou W, Gu B H, Lin Q Q, et al. Stable isotope composition of suspended particulate organic matter in twenty reservoirs from Guangdong, Southern China: implications for pelagic carbon and nitrogen cycling[J]. Water Research, 2013, 47(11): 3610-3623. doi: 10.1016/j.watres.2013.04.014
|
[34] |
Layman, Craig, A, et al. Can stable isotope ratios provide for community-wide measures of trophic structure?[J]. Ecology, 2007, 88(1): 42-48. doi: 10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2
|
[35] |
Saporiti F, Bearhop S, Silva L, et al. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: confirmations from the past[J]. Plos One, 2014, 9(7): e103132. doi: 10.1371/journal.pone.0103132
|
[36] |
Masese F O, Abrantes K G, Gettel G M, et al. Trophic structure of an African savanna river and organic matter inputs by large terrestrial herbivores: a stable isotope approach[J]. Freshwater Biology, 2018, 63(11): 1365-1380. doi: 10.1111/fwb.13163
|
[37] |
纪炜炜, 李圣法, 陈雪忠, 等. 基于稳定同位素方法的东海北部及其邻近水域主要游泳动物营养结构变化[J]. 海洋渔业, 2015, 37(6): 494-500. doi: 10.3969/j.issn.1004-2490.2015.06.002
Ji W W, Li S F, Chen X Z, et al. Variation in trophic structure of nekton organisms from the northern East China Sea and adjacent waters based on stable isotope values[J]. Marine Fisheries, 2015, 37(6): 494-500 (in Chinese). doi: 10.3969/j.issn.1004-2490.2015.06.002
|
[38] |
纪炜炜, 李圣法, 陈雪忠, 等. 基于稳定同位素方法的东海北部及其邻近水域主要游泳动物营养结构变化[J]. 海洋渔业, 2015, 37(6): 494-500. doi: 10.1016/j.marpolbul.2021.112474
Kang H Y, Lee B, Park H J, et al. Trophic structures of artificial reef communities off the southern coast of the Korean peninsula as determined using stable isotope analyses[J]. Marine Pollution Bulletin, 2021, 169: 112474. doi: 10.1016/j.marpolbul.2021.112474
|
[39] |
Zhang Z, Zhang H, Yu D, et al. Influence of spatial heterogeneity of artificial reefs on food sources and trophic levels of marine animals based on stable isotope ratios[J]. Ecological Indicators, 2020, 118: 106779. doi: 10.1016/j.ecolind.2020.106779
|
[40] |
Fu M, Wang Z, Li Y, et al. Phytoplankton biomass size structure and its regulation in the southern Yellow Sea (China): seasonal variability[J]. Continental Shelf Research, 2009, 29(18): 2178-2194. doi: 10.1016/j.csr.2009.08.010
|
[41] |
Fu M Z, Wang Z L, Pu X M, et al. Response of phytoplankton community to nutrient enrichment in the subsurface chlorophyll maximum in Yellow Sea Cold Water Mass[J]. Acta Ecologica Sinica, 2016, 36(1): 39-44. doi: 10.1016/j.chnaes.2015.09.007
|
[42] |
蔡德陵. 13C/12C比值作为海洋生态系统食物网示踪剂的研究──崂山湾水体生物食物网的营养关系[J]. 海洋与湖沼, 1999, 30(6): 671-678. doi: 10.3321/j.issn:0029-814X.1999.06.015
Cai D L. 13C /12 C ratios as a tracer for food web in a marine ecosystem: the trophic relations in pelagic food webs in Laoshan Bay[J]. Oceanologia et Limnologia Sinica, 1999, 30(6): 671-678 (in Chinese). doi: 10.3321/j.issn:0029-814X.1999.06.015
|
[43] |
姜会超, 陈海刚, 宋秀凯, 等. 莱州湾金城海域浮游动物群落结构及与环境因子的关系[J]. 生态学报, 2015, 35(22): 7308-7319. doi: 10.3321/j.issn:0029-814X.1999.06.015
Jiang H C, Chen H G, Song X K, et al. Zooplankton community structure in Jincheng area of Laizhou Bay and its relationship with environmental factors[J]. Acta Ecologica Sinica, 2015, 35(22): 7308-7319 (in Chinese). doi: 10.3321/j.issn:0029-814X.1999.06.015
|
[44] |
董志军, 杨青, 孙婷婷, 等. 黄河口邻近海域浮游动物群落时空变化特征[J]. 生态学报, 2017, 37(2): 659-667.
Dong Z J, Yang Q, Sun T T, et al. Spatial and seasonal variability of the zooplankton community in the Yellow River Estuary's adjacent sea[J]. Acta Ecologica Sinica, 2017, 37(2): 659-667 (in Chinese).
|
[45] |
董志军, 杨青, 孙婷婷, 等. 黄河口邻近海域浮游动物群落时空变化特征[J]. 生态学报, 2017, 37(2): 659-667. doi: 10.1016/j.ecolind.2021.107867
Lomartire S, Marques J C, Gonçalves A M M. The key role of zooplankton in ecosystem services: a perspective of interaction between zooplankton and fish recruitment[J]. Ecological Indicators, 2021, 129: 107867. doi: 10.1016/j.ecolind.2021.107867
|
[46] |
陈传曦, 张建柏, 王新萌, 等. 渤海莱州湾芙蓉岛人工鱼礁区浮游动物群落结构特征及其与环境因子的关系[J]. 中国水产科学, 2021, 28(3): 299-313. doi: 10.1016/j.ecolind.2021.107867
Chen C X, Zhang J B, Wang X M, et al. Zooplankton community structure and its relationship with environmental factors in an artificial reef near Furong Island, Laizhou Bay, Bohai Sea[J]. Journal of Fishery Sciences of China, 2021, 28(3): 299-313 (in Chinese). doi: 10.1016/j.ecolind.2021.107867
|
[47] |
徐勤增, 许强, 张立斌, 等. 牡蛎壳人工礁对多毛纲底栖动物群落结构的影响[J]. 海洋与湖沼, 2013, 44(4): 1056-1061.
Xu Q Z, Xu Q, Zhang L B, et al. Effect of artificial oyster shell reef on benthic polychaeta community structure in Rongcheng Bay, China[J]. Oceanologia et Limnologia Sinica, 2013, 44(4): 1056-1061 (in Chinese).
|
[48] |
陈晨, 焦海峰, 王一农, 等. 象山港海洋牧场示范区大型底栖生物的时空变化[J]. 海洋与湖沼, 2016, 47(1): 130-139.
Chen C, Jiao H F, Wang Y N, et al. Temporal and spatial changes of macrobenthos in marine pasture demonstration area in Xiangshan Bay[J]. Oceanologia et Limnologia Sinica, 2016, 47(1): 130-139 (in Chinese).
|
[49] |
陈晨, 焦海峰, 王一农, 等. 象山港海洋牧场示范区大型底栖生物的时空变化[J]. 海洋与湖沼, 2016, 47(1): 130-139. doi: 10.1016/S0990-7440(02)01154-3
Walker B K, Henderson B, Spieler R E. Fish assemblages associated with artificial reefs of concrete aggregates or quarry stone offshore Miami Beach, Florida, Usa[J]. Aquatic Living Resources, 2002, 15(2): 95-105. doi: 10.1016/S0990-7440(02)01154-3
|
[50] |
Fukunaga A, Bailey-Brock J H. Benthic infaunal communities around two artificial reefs in Mamala Bay, Oahu, Hawaii[J]. Marine Environmental Research, 2008, 65(3): 250-263. doi: 10.1016/j.marenvres.2007.11.003
|
[51] |
Burt J, Bartholomew A, Bauman A, et al. Coral recruitment and early benthic community development on several materials used in the construction of artificial reefs and breakwaters[J]. Journal of Experimental Marine Biology and Ecology, 2009, 373(1): 72-78. doi: 10.1016/j.jembe.2009.03.009
|
[52] |
孙习武, 孙满昌, 张硕, 等. 海州湾人工鱼礁二期工程海域大型底栖生物初步研究[J]. 生物学杂志, 2011, 28(1): 57-61. doi: 10.3969/j.issn.1008-9632.2011.01.057
Sun X W, Sun M C, Zhang S, et al. Preliminary study on macrobenthos in the second phase artificial reef construction area of Haizhou gulf[J]. Journal of Biology, 2011, 28(1): 57-61 (in Chinese). doi: 10.3969/j.issn.1008-9632.2011.01.057
|
[53] |
孙习武, 孙满昌, 张硕, 等. 海州湾人工鱼礁二期工程海域大型底栖生物初步研究[J]. 生物学杂志, 2011, 28(1): 57-61. doi: 10.1186/s13717-020-0214-4
Toledo M, Torres P, Díaz C, et al. Ecological succession of benthic organisms on niche-type artificial reefs[J]. Ecological Processes, 2020, 9(1): 10. doi: 10.1186/s13717-020-0214-4
|