• ISSN 1000-0615
  • CN 31-1283/S
FENG Chao, LI Lingzhi, ZHANG Gangchen, LIU Jian, YANG Jialiang, RAO Xin, HUANG Hongliang. Effect analysis of gear structure and sinker on the performance of Antarctic krill beam trawl[J]. Journal of fisheries of china, 2022, 46(3): 494-504. DOI: 10.11964/jfc.20211013111
Citation: FENG Chao, LI Lingzhi, ZHANG Gangchen, LIU Jian, YANG Jialiang, RAO Xin, HUANG Hongliang. Effect analysis of gear structure and sinker on the performance of Antarctic krill beam trawl[J]. Journal of fisheries of china, 2022, 46(3): 494-504. DOI: 10.11964/jfc.20211013111

Effect analysis of gear structure and sinker on the performance of Antarctic krill beam trawl

Funds: Shandong Province Key R & D Program Project (2019JZZY010819); National Key R & D Program (2018YFC1406803); Funded Project for Fundamental Scientific Research Business Expenses of Chinese Academy of Fishery Sciences (2021TD03)
More Information
  • Corresponding author:

    HUANG Hongliang. E-mail: ecshhl@163.com

  • Received Date: October 18, 2021
  • Revised Date: January 20, 2022
  • Available Online: March 01, 2022
  • Published Date: February 28, 2022
  • Beam trawl is an important part of Antarctic krll (Euphausia superba) continuous fishing system. In order to further understanding the gear performance under different conditions, a series of model test were designed to study the effect of gear structure and sinker on gear performance. The gear structures include 3 kinds of belly width and 2 types of knitting for each belly width, represented by A, B, C, AA, BB and CC respectively. Modified Tauti’s law was used to designed beam trawl models. The full scale was 20, mesh size or twine diameter scale was 10. Based on the energy efficiency coefficient, vertical opening and resistance, the performance of different gear structure were compared. The result showed that: the performance of different gear structure was in the order of BB>CC>C>A>B> AA, but the difference was not obvious (P>0.05). Less total line area of net can effectively improve the vertical opening of the beam trawl and reduce the energy efficiency coefficient, especially under the high trawling speed. Sinker weight was significantly correlate with gear resistance and vertical opening, and not significantly correlate with energy efficiency coefficient. In order to keep good performance in vertical opening of test nets, heavier sinker were needed under higher trawling speed. According to the model test, sinker weight should not be less than 3.05 t at the trawling speed of 1.5 m/s for test nets; a power function was observed between net resistance and trawling speed, and the index ranged from 1.49 to 1.64. These conclusions can be used as reference for the performance optimization of E. superba beam trawl and promote the development of E. superba fishery.
  • [1]
    Zhou M, Dorland R D. Aggregation and vertical migration behavior of Euphausia superba[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2004, 51(17-19): 2119-2137. doi: 10.1016/j.dsr2.2004.07.009
    [2]
    Atkinson A, Nicol S, Kawaguchi S, et al. Fitting Euphausia superba into southern ocean food-web models: a review of data sources and their limitations[J]. CCAMLR Science, 2012, 19: 219-245.
    [3]
    Stowasser G, Atkinson A, McGill R, et al. Food web dynamics in the Scotia Sea in summer: a stable isotope study[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2012, 59-60: 208-221. doi: 10.1016/j.dsr2.2011.08.004
    [4]
    刘永新, 李梦龙, 方辉, 等. 南极磷虾的资源概况与生态系统功能[J]. 水产学杂志, 2019, 32(1): 55-60. doi: 10.3969/j.issn.1005-3832.2019.01.010

    Liu Y X, Li M L, Fang H, et al. Resources status and ecosystem function in Antarctic krill[J]. Chinese Journal of Fisheries, 2019, 32(1): 55-60 (in Chinese). doi: 10.3969/j.issn.1005-3832.2019.01.010
    [5]
    黄洪亮, 陈雪忠, 冯春雷. 南极磷虾资源开发现状分析[J]. 渔业现代化, 2007, 34(1): 48-51. doi: 10.3969/j.issn.1007-9580.2007.01.017

    Huang H L, Chen X Z, Feng C L. Status of Euphausia superba resourse exploration[J]. Fishery Modernization, 2007, 34(1): 48-51 (in Chinese). doi: 10.3969/j.issn.1007-9580.2007.01.017
    [6]
    Atkinson A, Siegel V, Pakhomov E A, et al. A re-appraisal of the total biomass and annual production of Antarctic krill[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2009, 56(5): 727-740. doi: 10.1016/j.dsr.2008.12.007
    [7]
    Commission for the Conservation of Antarctic Marine Living Resources. Fishery report 2020: Euphausia superba in area 48[R]. Tasmania, Australia: Commission for the Conservation of Antarctic Marine Living Resources, 2020.
    [8]
    Cruz F S, Ernst B, Arata J A, et al. Spatial and temporal dynamics of the Antarctic krill fishery in fishing hotspots in the Bransfield Strait and South Shetland Islands[J]. Fisheries Research, 2018, 208: 157-166. doi: 10.1016/j.fishres.2018.07.020
    [9]
    Hill S, Atkinson A, Darby C, et al. Is current management of the Antarctic krill fishery in the Atlantic sector of the Southern Ocean precautionary?[J]. CCAMLR Science, 2016, 23: 31-51.
    [10]
    Moir C J, Davis M, Peatman T. A descriptive review of the trawl systems used in the Antarctic krill fishery[R]. Bergen: Commission for the Conservation of Antarctic Marine Living Resources, 2009.
    [11]
    徐鹏翔. 南极磷虾中层拖网性能研究[D]. 上海: 上海海洋大学, 2016.

    Xu P X. Performance of Antarctic krill midwater trawl[D]. Shanghai: Shanghai Ocean University, 2016 (in Chinese).
    [12]
    孟涛. 基于模型试验的我国南极磷虾中层拖网扩张性能研究[D]. 上海: 上海海洋大学, 2014.

    Meng T. The expansion performance of Antarctic krill mid-water trawl used by Chinese fishing fleets-examination by modeling experiments[D]. Shanghai: Shanghai Ocean University, 2014 (in Chinese).
    [13]
    冯春雷, 黄洪亮, 周爱忠. 南极磷虾拖网的性能优化分析[J]. 中国水产科学, 2012, 19(4): 662-670.

    Feng C L, Huang H L, Zhou A Z. Performance optimization of a trawl for Antarctic krill[J]. Journal of Fishery Sciences of China, 2012, 19(4): 662-670 (in Chinese).
    [14]
    徐国栋, 陈雪忠, 黄洪亮, 等. 南极磷虾捕捞技术探讨[J]. 湖南农业科学, 2011, 19: 122-124. doi: 10.3969/j.issn.1006-060X.2011.17.037

    Xu G D, Chen X Z, Huang H L, et al. The fishing technology for Euphausia superba[J]. Hunan Agricultural Sciences, 2011, 19: 122-124 (in Chinese). doi: 10.3969/j.issn.1006-060X.2011.17.037
    [15]
    周爱忠, 冯春雷, 张勋, 等. 调整作业参数对小网目南极磷虾拖网水动力性能的影响[J]. 海洋渔业, 2016, 38(1): 74-82. doi: 10.3969/j.issn.1004-2490.2016.01.010

    Zhou A Z, Feng C L, Zhang X, et al. Influence of adjustment of operation parameters on small-mesh Antarctic krill trawl[J]. Marine Fisheries, 2016, 38(1): 74-82 (in Chinese). doi: 10.3969/j.issn.1004-2490.2016.01.010
    [16]
    冯春雷, 刘健, 张禹, 等. 南极磷虾拖网结构优化设计与网具性能试验[J]. 农业工程学报, 2017, 33(7): 75-81. doi: 10.11975/j.issn.1002-6819.2017.07.010

    Feng C L, Liu J, Zhang Y, et al. Structure improvement design and performance experiment of Antarctic krill trawl net[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(7): 75-81 (in Chinese). doi: 10.11975/j.issn.1002-6819.2017.07.010
    [17]
    中国水产科学研究院东海水产研究所. 一种南极磷虾拖网网具: 中国, CN201410200253.3[P]. 2016-03-30.

    East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences. Antarctic krill trawl fishing net: CN, CN201410200253.3[P]. 2016-03-30 (in Chinese).
    [18]
    李灵智, 陈帅, 杨嘉樑, 等. 南极磷虾四片式小网目中层拖网作业性能分析[J]. 中国水产科学, 2017, 24(4): 893-901.

    Li L Z, Chen S, Yang J L, et al. Performance analysis of the four-panel mid-water trawl for Antarctic krill fishery[J]. Journal of Fishery Sciences of China, 2017, 24(4): 893-901 (in Chinese).
    [19]
    刘健, 黄洪亮, 陈勇, 等. 南极磷虾拖网网板水动力性能分析[J]. 渔业现代化, 2015, 42(2): 50-54. doi: 10.3969/j.issn.1007-9580.2015.02.12

    Liu J, Huang H L, Chen Y, et al. Analysis on the hydrodynamic characteristics of Antarctic krill trawl otter board[J]. Fishery Modernization, 2015, 42(2): 50-54 (in Chinese). doi: 10.3969/j.issn.1007-9580.2015.02.12
    [20]
    饶欣, 黄洪亮, 刘健, 等. 立式曲面V型网板在拖网系统中的力学配合计算研究[J]. 水产学报, 2015, 39(2): 284-293.

    Rao X, Huang H L, Liu J, et al. Studies on mechanical matching calculation of vertical cambered V type otter board in trawl system[J]. Journal of Fisheries of China, 2015, 39(2): 284-293 (in Chinese).
    [21]
    沈德昌. SC/T 4014—1997 拖网模型制作方法[S]. 北京: 中国标准出版社, 2004.

    Shen D C. SC/T 4014-1997 Preparation of trawl model[S]. Beijing: Standards Press of China, 2004 (in Chinese).
    [22]
    全国水产标准化技术委员会渔具分技术委员会. SC/T 4011—1995拖网模型水池试验方法[S]. 北京: 中国标准出版社, 1996.

    Fishing Gear Sub-Technical Committee of National Technical Committee on Fisheries Standardization. SC/T 4011—1995 Method for testing model trawl in tank[S]. Beijing: Standards Press of China, 1996 (in Chinese).
    [23]
    许柳雄. 渔具理论与设计学[M]. 北京: 中国农业出版社, 2004.

    Xu L X. Fishing gear theory and design[M]. Beijing: China Agriculture Press, 2004 (in Chinese).
    [24]
    陈雪忠, 黄锡昌. 渔具模型试验理论与方法[M]. 上海: 上海科学与技术出版社, 2011.

    Chen X Z, Huang X C. Theory and method for model fishing gear experiment [M]. Shanghai: Shanghai Science and Technology Press, 2011 (in Chinese).
    [25]
    Hu F X, Matuda K, Tokai T. Effects of drag coefficient of netting for dynamic similarity on model testing of trawl nets[J]. Fisheries Science, 2001, 67(1): 84-89. doi: 10.1046/j.1444-2906.2001.00203.x
    [26]
    Jaap P J, Turenhout M, Hans A E V O, et al. Adaptive response of beam trawl fishers to rising fuel cost[J]. Ices Journal of Marine Science, 2013, 70(3): 675-684. doi: 10.1093/icesjms/fss196
    [27]
    Beare D, Machiels M. Beam trawlermen take feet off gas in response to oil price hikes[J]. Ices Journal of Marine Science, 2012, 69(6): 1064-1068. doi: 10.1093/icesjms/fss057
    [28]
    Everson I. Krill: biology, ecology and fisheries[M]. London, Blackwell Science, 2000: 228-261.
    [29]
    Krag L A, Herrmann B, Iversen S A, et al. Size selection of Antarctic krill (Euphausia superba) in trawls[J]. PLoS ONE, 2014, 9(8): 1-14.

Catalog

    Article views (958) PDF downloads (9) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return