Citation: | JIA Yan, DU Meirong, LI Wenhao, JIANG Weiwei, LIN Fan, YAO Liang, WU Yuping, JIANG Zengjie. Effect of bioturbation of Urechis unicinctus on the diffusion flux of nitrogen and phosphorus at the sediment-water interface[J]. Journal of fisheries of china, 2023, 47(9): 099308. DOI: 10.11964/jfc.20211113203 |
Bioturbation refers to the biological reworking of soils and sediments by benthic animals, especially macrobenthos (e.g Venerupis philippinarum, Nutaliaolivacea, and Echinocardium cordatum, etc.). Previous studies have shown that bioturbation activity could enhance the migration and transformation of inorganic nitrogen with different forms at the sediments-water interface on the tidal flat, and increase the benthic nitrogen release rate, thus affecting the chemical characteristics of the sediment. In this study, Urechis unicinctus was selected as the research object to explore their effect of bioturbation on the diffusion flux of nitrogen and phosphorus at the sediment-water interface. Chinese Penis Fish, U. unicinctus, is an echiuran species with solid environmental adaptability, and is widely distributed in North Korea, Japan, and northern China, especially near intertidal and subtidal zones along the Bohai Sea coast of China. Usually,U. unicinctus inhabit in U-shaped burrows in sediments in intertidal areas and feed on filtering organic particles in the water. Furthermore, it has high economic value and nutritional value as aquatic products. Currently, the research of U. unicinctus mainly focuses on Reproductive biology, tolerating mechanism for sulfide, extract the active component, ecological health cultivation, etc. However, very few studies can be found about the impact of U. unicinctus bioturbation on the biogeochemical process of biogenic elements. To understand the ecological role of U. unicinctus in the sedimental environment, the effect of biological disturbance of U. unicinctus on the diffusion of nitrogen and phosphorus at the sediment-water interface was studied with indoor experiment. The U. unicinctus were divided according to four areal densities: low density (LD, 500 ind/m2), medium density (MD, 2 500 ind/m2), high density (HD, 8 300 ind/m2) and control group (CO, no worms), respectively. Each of this treatment group has five replicates. The 20-day indoor experiment were carried out in tanks during November-December 2020.The results showed that the release rate of NH4+ contents from sediment to water ranged from 10.6 to 765.3 μmol/(m2·d), and it increased to the maximum and then decreased gradually with time elapsed. Compared to the control group, the average nutrient release rate increased by 39%, 111%, and 257% in the LD, MD, and HD treatment groups, respectively. Significant differences were found for NH4+flux between the LD, MD, HD groups and the CO group (P<0.05). The values of NO3−+NO2−flux ranged from −172.05 to 208.63 μmol/(m 2.d) for all the experiment, but the average flux values were reduced by 8% and 32%, and 81%, respectively, in the LD, MD, and HD treatment groups. Further, the values of PO4− flux ranged from −7.85 to 6.42 μmol/(m 2.d) in the treatment groups during the entire period. There was a significant difference in PO4−-P flux between the MD and HD groups and the CO group from day 2 to day 14 during the experiment (P<0.05). It turned out that NH4+ is the main dissolved inorganic nitrogen (DIN) that affected by the biological disturbance of U. unicinctus. Taking into account the influence of U. unicinctus's metabolism and ammonia excretion, the NH4+ diffusion flux is calculated by subtracting the ammonia excretion. Although the NH4+ diffusion flux has a slight decrease, the trend of change over time remains unchanged. The results indicated that although the ammonia excretion effect of U. unicinctus has a certain contribution to the diffusion of NH4+ from the sediment to the water body, the dominant factor still comes from the bioturbation effect of U. unicinctus. In addition, the U. unicinctus promoted the diffusion of DIN from sediments to bottom water, with an obvious density effect. This work provides support to evaluate the potential ecological role of the U. unicinctus in the integrated multi-trophic aquaculture (IMTA) system.
[1] |
孙刚, 盛连喜, 千贺裕太郎. 生物扰动在水层-底栖界面耦合中的作用[J]. 生态环境, 2006, 15(5): 1106-1110.
Sun G, Sheng L X, Yutaro S. Advance in bioturbation effect in benthic-pelagic interface[J]. Ecology and Environment, 2006, 15(5): 1106-1110 (in Chinese).
|
[2] |
张志南. 水层—底栖耦合生态动力学研究的某些进展[J]. 青岛海洋大学学报, 2000, 30(1): 115-122.
Zhang Z N. Some progress of the study on the ecosystem dynamics for benthic pelagic coupling[J]. Journal of Ocean University of Qingdao, 2000, 30(1): 115-122 (in Chinese).
|
[3] |
Rhoads D C. Rates of sediment reworking by Yoldia limatula in Buzzards Bay, Massachusetts, and Long Island Sound[J]. Journal of Sedimentary Research, 1963, 33(3): 723-727.
|
[4] |
于子山, 王诗红, 张志南, 等. 紫彩血蛤的生物扰动对沉积物颗粒垂直分布的影响[J]. 青岛海洋大学学报, 1999, 29(2): 279-282.
Yu Z S, Wang S H, Zhang Z N, et al. The effect of bioturbation of Nuttallia olivacea (Jay, 1857) on the vertical distribution of sediment particles[J]. Journal of Ocean University of Qingdao, 1999, 29(2): 279-282 (in Chinese).
|
[5] |
杜永芬, 张志南. 菲律宾蛤仔的生物扰动对沉积物颗粒垂直分布的影响[J]. 中国海洋大学学报, 2004, 34(6): 988-992.
Du Y F, Zhang Z N. The effect of bioturbation of Ruditapes philippinarum on the vertical distribution of sedimert particles[J]. Periodical of Ocean University of China, 2004, 34(6): 988-992 (in Chinese).
|
[6] |
于子山, 张志南, 韩洁, 等. 心形海胆的生物扰动对沉积物颗粒垂直分布的影响[J]. 中国学术期刊文摘, 2000, 6(1): 95-97.
Yu Z S, Zhang Z N, HAN J, et al. The effect of bioturbation of Echinocardium cordatum (Pennant, 1777) on vertical distribution of sediment particles[J]. Chinese Science Abstracts, 2000, 6(1): 95-97 (in Chinese).
|
[7] |
余婕, 刘敏, 侯立军, 等. 底栖穴居动物对潮滩N迁移转化的影响[J]. 海洋环境科学, 2004, 23(2): 1-4. doi: 10.3969/j.issn.1007-6336.2004.02.001
Yu J, Liu M, Hou L J, et al. Effect of caving macrobenthos on nitrogen cycling in tidal flat[J]. Marine Environmental Science, 2004, 23(2): 1-4 (in Chinese). doi: 10.3969/j.issn.1007-6336.2004.02.001
|
[8] |
吴方同, 陈锦秀, 闫艳红, 等. 水丝蚓生物扰动对东洞庭湖沉积物氮释放的影响[J]. 湖泊科学, 2011, 23(5): 731-737. doi: 10.18307/2011.0510
Wu F T, Chen J X, Yan Y H, et al. The influence of Limnodrilus hoffmeisteri bioturbation on nitrogen release from sediments in the East Lake Dongting[J]. Journal of Lake Sciences, 2011, 23(5): 731-737 (in Chinese). doi: 10.18307/2011.0510
|
[9] |
邓可. 我国典型近岸海域沉积物-水界面营养盐交换通量及生物扰动的影响[D]. 青岛: 中国海洋大学, 2011.
Deng K. Benthic nutrient fluxes at typical areas in Chinese coast, with emphasis on bioturbation[D]. Qingdao: Ocean University of China, 2011 (in Chinese).
|
[10] |
Yingst J Y. Factors influencing rates of sediment ingestion by Parastichopus parvimensis (Clark), an epibenthic-deposit feeding holothurian[J]. Estuarine, Coastal and Shelf Science, 1982, 14(2): 119-134. doi: 10.1016/S0302-3524(82)80040-6
|
[11] |
Ahlgren M O. Consumption and assimilation of salmon net pen fouling debris by the red sea cucumber Parastichopus californicus: implications for polyculture[J]. Journal of the World Aquaculture Society, 1998, 29(2): 133-139. doi: 10.1111/j.1749-7345.1998.tb00972.x
|
[12] |
Zamora L N, Yuan X T, Carton A G, et al. Role of deposit‐feeding sea cucumbers in integrated multitrophic aquaculture: progress, problems, potential and future challenges[J]. Reviews in Aquaculture, 2018, 10(1): 57-74. doi: 10.1111/raq.12147
|
[13] |
徐永健, 卢光明, 葛奇伟. 双齿围沙蚕对围塘养殖沉积物氮磷含量的影响[J]. 水产学报, 2011, 35(1): 88-95.
Xu Y J, Lu G M, Ge Q W. Removing POM of sediment by Perinereis aibuhitensis Grube in earth pond[J]. Journal of Fisheries of China, 2011, 35(1): 88-95 (in Chinese).
|
[14] |
李俊伟, 朱长波, 郭永坚, 等. 光裸方格星虫(Sipunculus nudus)生物扰动对混养系统沉积物及间隙水中营养物质的影响[J]. 渔业科学进展, 2015, 36(1): 103-110. doi: 10.11758/yykxjz.20150116
Li Z W, Zhu C B, Guo Y J, et al. Influence of bioturbation of Sipunculus nudus on the nutrients of sediment and pore water in the polyculture system of S. nudus and Mugil cephlus[J]. Progress in Fishery Sciences, 2015, 36(1): 103-110 (in Chinese). doi: 10.11758/yykxjz.20150116
|
[15] |
农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2021.
Bureau of Fisheries, Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. 2021 China fishery statistical yearbook[M]. Beijing: China Agriculture Press, 2021 (in Chinese).
|
[16] |
Hatcher A, Grant J, Schofield B. Effects of suspended mussel culture (Mytilus spp. ) on sedimentation, benthic respiration and sediment nutrient dynamics in a coastal bay[J]. Marine Ecology Progress Series, 1994, 115(3): 219-235.
|
[17] |
周毅, 杨红生, 刘石林, 等. 烟台四十里湾浅海养殖生物及附着生物的化学组成、有机净生产量及其生态效应[J]. 水产学报, 2002, 26(1): 21-27.
Zhou Y, Yang H S, Liu S L, et al. Chemical composition and net organic production of cultivated and fouling organisms in Sishili Bay and their ecological effects[J]. Journal of Fisheries of China, 2002, 26(1): 21-27 (in Chinese).
|
[18] |
吕旭宁. 滤食性贝类规模化养殖的环境效应及可持续生产模式探索[D]. 上海: 上海海洋大学, 2017.
Lü X N. Environmental effects and exploration of sustainable production model of large-scale mariculture of filter-feeding bivalves[D]. Shanghai: Shanghai Ocean University, 2017 (in Chinese).
|
[19] |
张新明, 李慷均. 单环刺螠生物学及生理学研究进展[J]. 河南农业科学, 2011, 40(11): 26-29. doi: 10.3969/j.issn.1004-3268.2011.11.007
Zhang X M, Li K J. Research progress on biology and physiology of Urechis uniconctus[J]. Journal of Henan Agricultural Sciences, 2011, 40(11): 26-29 (in Chinese). doi: 10.3969/j.issn.1004-3268.2011.11.007
|
[20] |
刘峰, 孙涛, 纪元, 等. 单环刺螠生物学及生态学研究进展[J]. 海洋科学, 2017, 41(10): 125-131.
Liu F, Sun T, Ji Y, et al. Advances in studies on the biology and ecology of Urechis unicinctus[J]. Marine Sciences, 2017, 41(10): 125-131 (in Chinese).
|
[21] |
王思锋. 单环刺螠(Urechis unicinctus)对硫化物的氧化解毒及代谢适应[D]. 青岛: 中国海洋大学, 2006.
Wang S F. The oxidative detoxification and metabolic adaptation of Urechis unicinctus to sulfide[D]. Qingdao: Ocean University of China, 2006 (in Chinese).
|
[22] |
许星鸿, 孟霄, 甘宏涛, 等. 单环刺螠的繁殖生物学[J]. 水产学报, 2020, 44(8): 1275-1285.
Xu X H, Meng X, Gan H T, et al. Reproductive biology of Urechis unicinctus[J]. Journal Fishries China, 2020, 44(8): 1275-1285 (in Chinese).
|
[23] |
刘峰, 李光亚, 赵玉涵, 等. 单环刺螠耐硫机制研究进展[J]. 海洋科学, 2018, 42(7): 141-147. doi: 10.11759/hykx20180404001
Liu F, Li G Y, Zhao Y H, et al. The research progress on the tolerating mechanism for sulfide in Urechis unicinctus[J]. Marine Sciences, 2018, 42(7): 141-147 (in Chinese). doi: 10.11759/hykx20180404001
|
[24] |
Ma Y B, Zhang Z F, Shao M Y, et al. Sulfide: quinone oxidoreductase from echiuran worm Urechis unicinctus[J]. Marine Biotechnology, 2011, 13(1): 93-107. doi: 10.1007/s10126-010-9273-3
|
[25] |
Chen W B, Zhang S S, Sun Y, et al. Effects of substrate on the physiological characteristics and intestinal microbiota of echiura worm (Urechis unicinctus) juveniles[J]. Aquaculture, 2021, 530: 735710. doi: 10.1016/j.aquaculture.2020.735710
|
[26] |
Jo H Y, Jung W K, Kim S K. Purification and characterization of a novel anticoagulant peptide from marine echiuroid worm, Urechis unicinctus[J]. Process Biochemistry, 2008, 43(2): 179-184. doi: 10.1016/j.procbio.2007.11.011
|
[27] |
中华人民共和国生态环境部. HJ 442.3-2020 近岸海域环境监测技术规范 第三部分 近岸海域水质监测[S]. 北京: 中国环境科学出版社, 2021.
Ministry of Ecological Environment of the People's Republic of China. HJ 442.3-2020 Technical specification for offshore environmental monitoring Part 3 offshore seawater quality monitoring[S]. Beijing: China Environmental Science Press, 2021 (in Chinese).
|
[28] |
Boudreau B P. Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments[M]. New York: Springer, 1997.
|
[29] |
Zhang S, Fang X, Zhang J B, et al. The effect of bioturbation activity of the ark clam Scapharca subcrenata on the fluxes of nutrient exchange at the sediment-water interface[J]. Journal of Ocean University of China, 2020, 19(1): 232-240. doi: 10.1007/s11802-020-4112-2
|
[30] |
孙思志, 郑忠明. 大型底栖动物的生物干扰对沉积环境影响的研究进展[J]. 浙江农业学报, 2010, 22(2): 263-268. doi: 10.3969/j.issn.1004-1524.2010.02.027
Sun S Z, Zheng Z M. Effect of benthic macro-invertebrate bioturbation on sediment environment: a review[J]. Acta Agriculturae Zhejiangensis, 2010, 22(2): 263-268 (in Chinese). doi: 10.3969/j.issn.1004-1524.2010.02.027
|
[31] |
孙思志, 郑忠明, 陆开宏, 等. 铜锈环棱螺对藻华水体沉积物-水界面营养盐通量的影响[J]. 生态学杂志, 2010, 29(4): 730-734. doi: 10.13292/j.1000-4890.2010.0107
Sun S Z, Zheng Z M, Lu K H, et al. Effects of Bellamya aeruginosa bioturbation on nutrient fluxes across sediment-water interface of algal bloom water body[J]. Chinese Journal of Ecology, 2010, 29(4): 730-734 (in Chinese). doi: 10.13292/j.1000-4890.2010.0107
|
[32] |
孙思志, 郑忠明, 陆开宏, 等. 铜锈环棱螺对藻华水体沉积物-水界面营养盐通量的影响[J]. 生态学杂志, 2010, 29(4): 730-734. doi: 10.1007/s10499-013-9716-8
Nicholaus R, Zheng Z M. The effects of bioturbation by the Venus clam Cyclina sinensis on the fluxes of nutrients across the sediment–water interface in aquaculture ponds[J]. Aquaculture International, 2014, 22(2): 913-924. doi: 10.1007/s10499-013-9716-8
|
[33] |
Zhang L, Shen Q S, Hu H Y, et al. Impacts of Corbicula fluminea on oxygen uptake and nutrient fluxes across the sediment–water interface[J]. Water, Air, & Soil Pollution, 2011, 220(1-4): 399-411. doi: 10.1007/s10499-013-9716-8
|
[34] |
李耀睿. 颤蚓生物扰动对水—沉积物界面附近理化特征的影响[D]. 长春: 吉林大学, 2016.
Li Y R. Effects of tubificid bioturbation on the physical and chemical characteristics of water-sediment interface[D]. Changchun: Jilin University, 2016 (in Chinese).
|
[35] |
李耀睿. 颤蚓生物扰动对水—沉积物界面附近理化特征的影响[D]. 长春: 吉林大学, 2016. doi: 10.1038/ismej.2007.8
Francis C A, Beman J M, Kuypers M M M. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation[J]. The ISME Journal, 2007, 1(1): 19-27. doi: 10.1038/ismej.2007.8
|
[36] |
Laverock B, Smith C J, Tait K, et al. Bioturbating shrimp alter the structure and diversity of bacterial communities in coastal marine sediments[J]. The ISME Journal, 2010, 4(12): 1531-1544. doi: 10.1038/ismej.2010.86
|
[37] |
Huang R, Zhao D Y, Zeng J, et al. Bioturbation of Tubificid worms affects the abundance and community composition of ammonia-oxidizing archaea and bacteria in surface lake sediments[J]. Annals of Microbiology, 2016, 66(3): 1065-1073. doi: 10.1007/s13213-016-1192-8
|
[38] |
龚骏, 宋延静, 张晓黎. 海岸带沉积物中氮循环功能微生物多样性[J]. 生物多样性, 2013, 21(4): 434-445. doi: 10.1007/s13213-016-1192-8
Gong J, Song Y J, Zhang X L. Phylogenetic and functional diversity of nitrogen cycling microbes in coastal sediments[J]. Biodiversity Science, 2013, 21(4): 434-445 (in Chinese). doi: 10.1007/s13213-016-1192-8
|
[39] |
陈振楼, 刘杰, 许世远, 等. 大型底栖动物对长江口潮滩沉积物-水界面无机氮交换的影响[J]. 环境科学, 2005, 26(6): 43-50. doi: 10.3321/j.issn:0250-3301.2005.06.009
Chen Z L, Liu J, Xu S Y, et al. Impact of macrofaunal activities on the DIN exchange at the sediment-water interface along the tidal flat of Yangtze River estuary[J]. Environmental Science, 2005, 26(6): 43-50 (in Chinese). doi: 10.3321/j.issn:0250-3301.2005.06.009
|
[40] |
高磊, 李道季, 余立华, 等. 春季长江口崇明东滩沉积物-水界面营养盐交换过程研究[J]. 海洋与湖沼, 2009, 40(2): 109-116. doi: 10.3321/j.issn:0029-814X.2009.02.001
Gao L, Li D J, Yu L H, et al. Sediment-water exchange of nutrients in Dongtan salt marsh within the Changjiang (Yangtze River) estuary in spring[J]. Oceanologia et Limnologia Sinica, 2009, 40(2): 109-116 (in Chinese). doi: 10.3321/j.issn:0029-814X.2009.02.001
|
[41] |
宋金明. 中国近海沉积物—海水界面化学[M]. 北京: 海洋出版社, 1997. doi: 10.3321/j.issn:0029-814X.2009.02.001
Song J M. Chemistry of sediment-seawater interface of the China seas[M]. Beijng: China Ocean Press, 1997 (in Chinese). doi: 10.3321/j.issn:0029-814X.2009.02.001
|
[42] |
孙刚. 底栖动物的生物扰动效应[M]. 北京: 科学出版社, 2013.
Sun G. Bioturbation effects of benthic animals[M]. Beijing: Science Press, 2013 (in Chinese).
|
[43] |
侯诒然, 高勤峰, 董双林, 等. 不同规格刺参的生物扰动作用对沉积物中磷赋存形态及吸附特性的影响[J]. 中国海洋大学学报, 2017, 47(9): 36-45.
Hou Y R, Gao Q F, Dong S L, et al. Effect of the bioturbation derived from sea cucumber (Apostichopus japonicus) of different size on sediment phosphorus forms and phosphorus adsorption characteristics[J]. Periodical of Ocean University of China, 2017, 47(9): 36-45 (in Chinese).
|
[44] |
郑余琦, 郑忠明, 秦文娟. 缢蛏(Sinonovacula constricta)生物扰动对养殖废水处理系统中沉积物磷赋存形态垂直分布的影响[J]. 海洋与湖沼, 2017, 48(1): 161-170.
Zhang Y Q, Zhang Z M, Qin W J. Effects of bioturation by razor clam Sinonovacula constricta on vertical distribution of phosphorus form in sediment in an aquaculture wastewater treatment ecosystem[J]. Oceanologia et Limnologia Sinica, 2017, 48(1): 161-170 (in Chinese).
|
[45] |
郑余琦, 郑忠明, 秦文娟. 缢蛏(Sinonovacula constricta)生物扰动对养殖废水处理系统中沉积物磷赋存形态垂直分布的影响[J]. 海洋与湖沼, 2017, 48(1): 161-170. doi: 10.4319/lo.1992.37.3.0577
Jensen H S, Andersen F O. Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes[J]. Limnology and Oceanography, 1992, 37(3): 577-589. doi: 10.4319/lo.1992.37.3.0577
|
[46] |
Lewandowski J, Hupfer M. Effect of macrozoobenthos on two-dimensional small-scale heterogeneity of pore water phosphorus concentrations in lake sediments: a laboratory study[J]. Limnology and oceanography, 2005, 50(4): 1106-1118. doi: 10.4319/lo.2005.50.4.1106
|
[47] |
You J, Das A, Dolan E M, et al. Ammonia-oxidizing archaea involved in nitrogen removal[J]. Water Research, 2009, 43(7): 1801-1809. doi: 10.1016/j.watres.2009.01.016
|