• ISSN 1000-0615
  • CN 31-1283/S
LAI Zhuoxin, SONG Xinlin, PAN Ruozhe, TAN Youxuan, WANG Qingheng. Sequence characteristics of V-ATPase-d gene in Pinctada fucata martensii and its relationship with low temperature tolerance[J]. Journal of fisheries of china, 2024, 48(9): 099107. DOI: 10.11964/jfc.20220313351
Citation: LAI Zhuoxin, SONG Xinlin, PAN Ruozhe, TAN Youxuan, WANG Qingheng. Sequence characteristics of V-ATPase-d gene in Pinctada fucata martensii and its relationship with low temperature tolerance[J]. Journal of fisheries of china, 2024, 48(9): 099107. DOI: 10.11964/jfc.20220313351

Sequence characteristics of V-ATPase-d gene in Pinctada fucata martensii and its relationship with low temperature tolerance

Funds: Natural Science Foundation of Guangdong Province, China (2020A151501691); Department of Education of Guangdong Province (2020ZDZX1045); Special Project for Modern Agricultural Industry Technology System in Guangdong Province (2022KJ146)
More Information
  • Corresponding author:

    WANG Qingheng. E-mail: wangqh@gdou.edu.cn

  • Received Date: February 28, 2022
  • Revised Date: October 11, 2022
  • Available Online: August 13, 2024
  • V-ATPase plays an important role in biological response to various environmental stress, in order to explore the role of V-ATPase in the low temperature adaptation of Pinctada fucata martensii, the V-ATPase-d gene of P. fucata.martensii was identified, and the changes in the expression of Pm-V-ATPase-d under low temperature stress were analyzed. Screening and comparative analysis of the gene in the low temperature resistant breeding line (R) F3 and Beibu Gulf wild population (W) SNP loci in the exon region. Sequence analysis showed that Pm-V-ATPase-d has a total length of 1 473 bp and open reading frame (ORF) of 1 140 bp, encoding 379 amino acids, with a typical ATP domain, Pfam vATP-synt_AC39. The results of motif analysis and tertiary structure prediction showed that Pm-V-ATPase-d was highly conserved, and it clustered with Crassostrea gigas in the phylogenetic tree. Whole tissue fluorescence quantitative results showed that Pm-V-ATPase-d was expressed in all the tested tissues, and the expression level was higher in hepatopancreas, gonads and gill tissues (P<0.05). Under low temperature stress, the expression level of Pm-V-ATPase-d gene increased first and then decreased with the extension of time, and the expression level of the low temperature group was significantly higher than the control group(P<0.05), indicating that Pm-V-ATPase-d may be involved in the response of P. fucata martensii to temperature stress. The SNP analysis of the exon region of Pm-V-ATPase-d resulted in a total of 35 SNPs, which 34 were synonymous mutations, only one site was a non-synonymous mutation, and 26 SNPs were significantly different between genotypes and alleles in W and R populations(P<0.05), the results of haplotype linkage disequilibrium analysis showed that the Pm-V-ATPase-d gene SNPs could form 6 haplotype blocks and 14 haplotypes, the haplotypes GAAT, CGC, TC, TG and AG were significantly correlated with low temperature resistance traits of P. fucata martensii (P<0.05). These research data indicate that Pm-V-ATPase-d may be a candidate gene involved in regulating the adaptation to low temperature of P. fucata martensii. This study can provide a research basis for the adaptation mechanism of P. fucata martensii to low temperature. The SNPs and haplotypes associated with low temperature resistance traits can be used in molecular assisted breeding.

  • [1]
    Kakinuma Y, Ohsumi Y, Anraku Y. Properties of H+-translocating adenosine triphosphatase in vacuolar membranes of Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 1981, 256(21): 10859-10863. doi: 10.1016/S0021-9258(19)68523-6
    [2]
    Stevens T H, Forgac M. Structure, function and regulation of the vacuolar (H+)-ATPase[J]. Annual Review of Cell and Developmental Biology, 1997, 13: 779-808. doi: 10.1146/annurev.cellbio.13.1.779
    [3]
    Cipriano D J, Wang Y R, Bond S, et al. Structure and regulation of the vacuolar ATPases[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2008, 1777(7-8): 599-604. doi: 10.1016/j.bbabio.2008.03.013
    [4]
    Toei M, Saum R, Forgac M. Regulation and isoform function of the V-ATPases[J]. Biochemistry, 2010, 49(23): 4715-4723. doi: 10.1021/bi100397s
    [5]
    张林娟, 潘鲁青, 栾治华. pH变化对日本囊对虾仔虾离子转运酶活力和存活、生长的影响[J]. 水产学报, 2008, 32(5): 758-764.

    Zhang L J, Pan L Q, Luan Z H. Effects of pH on ion-transport enzyme activities and survival, growth of Marspenaeus japonicus postlarvae[J]. Journal of Fisheries of China, 2008, 32(5): 758-764 (in Chinese).
    [6]
    Lucena M N, Pinto M R, Garçon D P, et al. A kinetic characterization of the gill V(H+)-ATPase in juvenile and adult Macrobrachium amazonicum, a diadromous palaemonid shrimp[J]. Comparative Biochemistry and Physiology-Part B: Biochemistry and Molecular Biology, 2015, 181: 15-25. doi: 10.1016/j.cbpb.2014.11.002
    [7]
    Ren Q, Pan L Q, Zhao Q, et al. Ammonia and urea excretion in the swimming crab Portunus trituberculatus exposed to elevated ambient ammonia-N[J]. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology, 2015, 187: 48-54.
    [8]
    Yu Z C, Wang T Q, Luo Y N, et al. Overexpression of the V-ATPase c subunit gene from Antarctic notothenioid fishes enhances freezing tolerance in transgenic Arabidopsis plants[J]. Plant Physiology and Biochemistry, 2021, 160: 365-376. doi: 10.1016/j.plaphy.2021.01.038
    [9]
    Ratajczak R. Structure, function and regulation of the plant vacuolar H+-translocating ATPase[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2000, 1465(1-2): 17-36. doi: 10.1016/S0005-2736(00)00129-2
    [10]
    Xu C X, Zheng L, Gao C Q, et al. Ovexpression of a Vacuolar H+-ATPase c subunit gene mediates physiological changes leading to enhanced salt tolerance in transgenic tobacco[J]. Plant Molecular Biology Reporter, 2011, 29(2): 424-430. doi: 10.1007/s11105-010-0247-4
    [11]
    张玉红, 安志刚. 植物V-H+-ATP酶适应逆境的分子调控机理[J]. 草业科学, 2013, 30(2): 245-252.

    Zhang Y H, An Z G. Molecular regulation mechanism of V-H+-ATPase adapt to environmental stress in plant[J]. Pratacultural Science, 2013, 30(2): 245-252 (in Chinese).
    [12]
    Kluge C, Lamkemeyer P, Tavakoli N, et al. cDNA cloning of 12 subunits of the V-type ATPase from Mesembryanthemum crystallinum and their expression under stress[J]. Molecular Membrane Biology, 2003, 20(2): 171-183. doi: 10.1080/0968768031000084154
    [13]
    Dabbous A, Ben Saad R, Brini F, et al. Over-expression of a subunit E1 of a vacuolar H+-ATPase gene (Lm VHA-E1) cloned from the halophyte Lobularia maritima improves the tolerance of Arabidopsis thaliana to salt and osmotic stresses[J]. Environmental and Experimental Botany, 2017, 137: 128-141. doi: 10.1016/j.envexpbot.2017.01.013
    [14]
    Horng J L, Lin L Y, Hwang P P. Functional regulation of H+-ATPase-rich cells in zebrafish embryos acclimated to an acidic environment[J]. American Journal of Physiology: Cell Physiology, 2009, 296(4): C682-C692. doi: 10.1152/ajpcell.00576.2008
    [15]
    徐娴, 何琳, 林志华, 等. 盐度胁迫下缢蛏渗透压变化及V-ATPase H基因的表达分析[J]. 动物学杂志, 2020, 55(5): 606-613.

    Xu X, He L, Lin Z H, et al. Effects of salinity stress on V-ATPase H expression, enzyme activity and osmotic pressure in Sinonovacula constricta[J]. Chinese Journal of Zoology, 2020, 55(5): 606-613 (in Chinese).
    [16]
    胡硕, 何玉英, 李健, 等. 中国对虾V-ATPasec亚基基因的克隆及其在高pH胁迫下的表达分析[J]. 中国水产科学, 2019, 26(6): 1064-1074.

    Hu S, He Y Y, Li J, et al. Expression analysis of V-ATPase subunit c under high pH stress in Fenneropenaeus chinensis[J]. Journal of Fishery Sciences of China, 2019, 26(6): 1064-1074 (in Chinese).
    [17]
    Liu Y T, Hao Y T, Liu Y F, et al. atp6v0b gene regulates the immune response against Vibrio vulnificus in half-smooth tongue sole (Cynoglossus semilaevis)[J]. Aquaculture Reports, 2021, 20: 100758. doi: 10.1016/j.aqrep.2021.100758
    [18]
    Aagesen A M, Häse C C. Seasonal effects of heat shock on bacterial populations, including artificial Vibrio parahaemolyticus exposure, in the Pacific oyster, Crassostrea gigas[J]. Food Microbiology, 2014, 38: 93-103. doi: 10.1016/j.fm.2013.08.008
    [19]
    Viergutz C, Linn C, Weitere M. Intra- and interannual variability surpasses direct temperature effects on the clearance rates of the invasive clam Corbicula fluminea[J]. Marine Biology, 2012, 159(11): 2379-2387. doi: 10.1007/s00227-012-1902-0
    [20]
    田荣荣, 田群莉, 杜晓东, 等. 马氏珠母贝SRF基因的分子特征及组织特异性表达[J]. 基因组学与应用生物学, 2015, 34(2): 272-278.

    Tian R R, Tian Q L, Du X D, et al. Molecular characterization and tissue specific expression of SRF gene from Pinctada martensii[J]. Genomics and Applied Biology, 2015, 34(2): 272-278 (in Chinese).
    [21]
    Deng Y W, Du X D, Wang Q H. Selection for fast growth in the Chinese Pearl oyster, Pinctada martensii: response of the first generation line[J]. Journal of the World Aquaculture Society, 2009, 40(6): 843-847.
    [22]
    Wang Q H, Liu Y, Zheng Z, et al. Adaptive response of pearl oyster Pinctada fucata martensii to low water temperature stress[J]. Fish & Shellfish Immunology, 2018, 78: 310-315.
    [23]
    Lai Z X, Adzigbli L, Chen Q Y, et al. Identification and allelic variants associated with cold tolerance of PmPIAS in Pinctada fucata martensii[J]. Frontiers in Physiology, 2021, 12: 634838. doi: 10.3389/fphys.2021.634838
    [24]
    Kwok P Y. Methods for genotyping single nucleotide polymorphisms[J]. Annual Review of Genomics and Human Genetics, 2002, 2: 235-258.
    [25]
    赖卓欣. 马氏珠母贝耐低温选育系的选择印记分析[D]. 湛江: 广东海洋大学, 2020.

    Lai Z X. Genome selection sweep of low temperature resistant line from Pinctada fucata martensii[D]. Zhanjiang: Guangdong Ocean University, 2020 (in Chinese).
    [26]
    Du X D, Fan G Y, Jiao Y, et al. The pearl oyster Pinctada fucata martensii genome and multi-omic analyses provide insights into biomineralization[J]. GigaScience, 2017, 6(8): gix059.
    [27]
    Finbow M E, Harrison M A. The vacuolar H+-ATPase: a universal proton pump of eukaryotes[J]. Biochemical Journal, 1997, 324(3): 697-712. doi: 10.1042/bj3240697
    [28]
    Gu X H, Lin H R, Xia J H. Significant association of SNP polymorphism in the tilapia enhancer of polycomb homolog 1 gene with salt tolerance[J]. Aquaculture Research, 2018, 49(4): 1690-1698. doi: 10.1111/are.13625
    [29]
    Smith A N, Francis R W, Sorrell S L, et al. The d subunit plays a central role in human vacuolar H+-ATPases[J]. Journal of Bioenergetics and Biomembranes, 2008, 40(4): 371-380. doi: 10.1007/s10863-008-9161-y
    [30]
    Feng S, Peng Y, Liu E H, et al. Arabidopsis V-ATPase d2 subunit plays a role in plant responses to oxidative stress[J]. Genes, 2020, 11(6): 701. doi: 10.3390/genes11060701
    [31]
    Kane P M. Disassembly and reassembly of the Yeast vacuolar H+-ATPase in vivo[J]. Journal of Biological Chemistry, 1995, 270(28): 17025-17032. doi: 10.1016/S0021-9258(17)46944-4
    [32]
    Srinivasan S, Vyas N K, Baker M L, et al. Crystal structure of the cytoplasmic N-terminal domain of subunit I, a homolog of subunit a, of V-ATPase[J]. Journal of Molecular Biology, 2011, 412(1): 14-21. doi: 10.1016/j.jmb.2011.07.014
    [33]
    Söderhäll K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity[J]. Current Opinion in Immunology, 1998, 10(1): 23-28. doi: 10.1016/S0952-7915(98)80026-5
    [34]
    Arun S, Subramanian P. Antioxidant enzymes in freshwater prawn Macrobrachium malcolmsonii during embryonic and larval development[J]. Comparative Biochemistry and Physiology-Part B: Biochemistry and Molecular Biology, 1998, 121(3): 273-277. doi: 10.1016/S0305-0491(98)10100-1
    [35]
    金彩霞, 潘鲁青. 盐度变化对克氏原螯虾渗透调节影响机制的初步研究[J]. 水生生物学报, 2008, 32(6): 894-899.

    Jin C X, Pan L Q. Preliminary studies on physiological adaptive mechanism of Procambarus clarkii osmo regulation under different ambient salinities[J]. Acta Hydrobiologica Sinica, 2008, 32(6): 894-899 (in Chinese).
    [36]
    Li T D, Roer R, Vana M, et al. Gill area, permeability and Na+, K+-ATPase activity as a function of size and salinity in the blue crab, Callinectes sapidus[J]. Journal of Experimental Zoology-Part A: Comparative Experimental Biology, 2006, 305(3): 233-245.
    [37]
    Vernberg W B, Decoursey P J, Padgett W J. Synergistic effects of environmental variables on larvae of Uca pugilator[J]. Marine Biology, 1973, 22(4): 307-312. doi: 10.1007/BF00391386
    [38]
    Wieczorek H, Putzenlechner M, Zeiske W, et al. A vacuolar-type proton pump energizes K+/H+ antiport in an animal plasma membrane[J]. Journal of Biological Chemistry, 1991, 266(23): 15340-15347. doi: 10.1016/S0021-9258(18)98621-7
    [39]
    Beyenbach K W. Energizing epithelial transport with the vacuolar H+-ATPase[J]. News in Physiological Sciences, 2001, 16(4): 145-151.
    [40]
    Towle D W, Henry R P, Terwilliger N B. Microarray-detected changes in gene expression in gills of green crabs (Carcinus maenas) upon dilution of environmental salinity[J]. Comparative Biochemistry and Physiology-Part D: Genomics and Proteomics, 2011, 6(2): 115-125. doi: 10.1016/j.cbd.2010.11.001
    [41]
    Firmino K C S, Faleiros R O, Masui D C, et al. Short- and long-term, salinity-induced modulation of V-ATPase activity in the posterior gills of the true freshwater crab, Dilocarcinus pagei (Brachyura, Trichodactylidae)[J]. Comparative Biochemistry and Physiology-Part B: Biochemistry and Molecular Biology, 2011, 160(1): 24-31. doi: 10.1016/j.cbpb.2011.05.002
    [42]
    贾继增. 分子标记种质资源鉴定和分子标记育种[J]. 中国农业科学, 1996, 29(4): 1-10.

    Jia J Z. Molecular germplasm diagnostics and molecular marker assisted breeding[J]. Scientia Agricultura Sinica, 1996, 29(4): 1-10 (in Chinese).
    [43]
    Yang Z T, Wang L, Wong S M, et al. The HIF1αn gene and its association with hypoxia tolerance in the Asian seabass[J]. Gene, 2020, 731: 144341. doi: 10.1016/j.gene.2020.144341
    [44]
    Zeng D G, Chen X H, Li Y M, et al. Analysis of Hsp70 in Litopenaeus vannamei and detection of SNPs[J]. Journal of Crustacean Biology, 2008, 28(4): 727-730. doi: 10.1651/08-3019.1
    [45]
    Hao G J, Lin F, Mu C K, et al. SNP E4-205 C/T in C-type lectin of Portunus trituberculatus is association with susceptibility/resistance to Vibrio alginolyticus challenge[J]. Aquaculture, 2015, 442: 125-131. doi: 10.1016/j.aquaculture.2015.02.007
    [46]
    Siva V S, Yang C Y, Yang J L, et al. Association between the polymorphism of CfPGRP-S1 gene and disease susceptibility/resistance of Zhikong scallop (Chlamys farreri) to Listonella anguillarum challenge[J]. Fish & Shellfish Immunology, 2012, 33(4): 736-742.
    [47]
    Nie Q, Yue X, Liu B Z. Development of Vibrio spp. infection resistance related SNP markers using multiplex SNaPshot genotyping method in the clam Meretrix meretrix[J]. Fish & Shellfish Immunology, 2015, 43(2): 469-476.
    [48]
    Reumers J, Conde L, Medina I, et al. Joint annotation of coding and non-coding single nucleotide polymorphisms and mutations in the SNPeffect and PupaSuite databases[J]. Nucleic Acids Research, 2008, 36(S1): D825-D829.
    [49]
    Cartegni L, Chew S L, Krainer A R. Listening to silence and understanding nonsense: exonic mutations that affect splicing[J]. Nature Reviews Genetics, 2002, 3(4): 285-298. doi: 10.1038/nrg775
    [50]
    Hohenlohe P A, Bassham S, Currey M, et al. Extensive linkage disequilibrium and parallel adaptive divergence across threespine stickleback genomes[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1587): 395-408. doi: 10.1098/rstb.2011.0245
    [51]
    Slatkin M. Linkage disequilibrium-understanding the evolutionary past and mapping the medical future[J]. Nature Reviews Genetics, 2008, 9(6): 477-485. doi: 10.1038/nrg2361
  • Related Articles

    [1]ZHOU Kangqi, WEI Zina, LI Zhe, LIN Yong, HUANG Yin, DU Xuesong, QIN Junqi, CHEN Zhong, OU Hongxia, XU Junlong, XIANG Guide, PAN Xianhui. Effects of different times of low temperature anhydrous preservation on survival, nutritional composition, enzyme activities and antioxidant indexes of Cipangopaludina chinensis[J]. Journal of fisheries of china, 2024, 48(6): 069816. DOI: 10.11964/jfc.20211213262
    [2]FU Dongyong, ZHANG Yiran, CHU Peng, WANG Haozhe, ZHANG Kai, BI Yihui, SUN Yiru, WANG Tao, YIN Shaowu. Effects of low temperature stress on the oxidative stress, apoptosis and intestinal microbial composition in intestine of Takifugu fasciatus[J]. Journal of fisheries of china, 2024, 48(1): 019604. DOI: 10.11964/jfc.20210913087
    [3]ZENG Lin, SONG Wei, XIE Zhengli, WANG Yonghong, XIONG Yifei, ZHANG Hui. Metabolomics-based analysis of adaptive mechanism of Larimichthys crocea to low temperature and starvation stresses[J]. Journal of fisheries of china, 2023, 47(7): 079608. DOI: 10.11964/jfc.20221013772
    [4]LIU Nannan, CHENG Xinkai, YANG Yang, LIU Juan, GU Haoran, WANG Zhijian. Effects of low temperature on the ovarian development of Sinibrama taeniatus[J]. Journal of fisheries of china, 2022, 46(8): 1389-1402. DOI: 10.11964/jfc.20210112582
    [5]WU Xiaoman, FANG Hong, NIE Pin, CHANG Mingxian. Nucleotide polymorphism and function of piscine histone H2A in Edwardsiella piscicida infection[J]. Journal of fisheries of china, 2020, 44(9): 1525-1538. DOI: 10.11964/jfc.20200712323
    [6]HUANG Linbin, HUANG Wen, YAN Xinghong. Low-salinity tolerance of two high-temperature resistant strains in Pyropia yezoensis[J]. Journal of fisheries of china, 2020, 44(2): 222-233. DOI: 10.11964/jfc.20190311687
    [7]XUE Baobao, MENG Delong, REN Hongyu, SHEN Benlong, NIU Donghong, LI Jiale, SHEN Heding. ScHsc70 gene SNP markers screening and correlation analysis for high temperature resistance of Sinonovacula constricta new variety “Shenzhe NO. 1”[J]. Journal of fisheries of china, 2019, 43(12): 2439-2448. DOI: 10.11964/jfc.20181111527
    [8]HU Junru, WANG Guoxia, SUN Yuping, ZHAO Hongxia, HUANG Yanhua, CAO Junming. Effects of dietary sodium selenite and selenoyeast on growth performance, antioxidant responses and low temperature stress resistance of juvenile yellow catfish (Pelteobagrus fulvidraco)[J]. Journal of fisheries of china, 2019, 43(11): 2394-2404. DOI: 10.11964/jfc.20181011479
    [9]LI Shengjie, JIANG Peng, FAN Jiajia, BAI Junjie, LI Rui, ZHU Xinping. SNPs detection of MYH gene and its association with growth traits in largemouth bass (Micropterus salmoides)[J]. Journal of fisheries of china, 2018, 42(3): 305-313. DOI: 10.11964/jfc.20170310750
    [10]ZHAO Lian, LI Zhihui, ZHANG Pei, XUE Bei, LAI Xiaofang, GAO Huan, YAN Binlun. Analysis of single nucleotide polymorphism (SNP) in mitochondrial genome of Portunus trituberculatus[J]. Journal of fisheries of china, 2018, 42(2): 196-203. DOI: 10.11964/jfc.20161210645

Catalog

    Article views (108) PDF downloads (16) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return