• ISSN 1000-0615
  • CN 31-1283/S
ZHANG Haobo, WANG Xiaoyan, CHEN Zhi, ZHONG Lanping, GAO Tianxiang. Preliminary study on spatial distribution pattern of fish in Zhoushan and its adjacent waters based on environmental DNA metabarcoding[J]. Journal of fisheries of china, 2024, 48(8): 089311. DOI: 10.11964/jfc.20220713618
Citation: ZHANG Haobo, WANG Xiaoyan, CHEN Zhi, ZHONG Lanping, GAO Tianxiang. Preliminary study on spatial distribution pattern of fish in Zhoushan and its adjacent waters based on environmental DNA metabarcoding[J]. Journal of fisheries of china, 2024, 48(8): 089311. DOI: 10.11964/jfc.20220713618

Preliminary study on spatial distribution pattern of fish in Zhoushan and its adjacent waters based on environmental DNA metabarcoding

Funds: National Natural Science Foundation of China (41806180, 41976083); the Zhejiang Provincial Key Research and Development Program (2021C02047)
More Information
  • Corresponding author:

    GAO Tianxiang. E-mail: gaotianxiang0611@163.com

  • Received Date: July 26, 2022
  • Revised Date: October 31, 2022
  • Available Online: July 14, 2024
  • As an irreplaceable and important ecosystem, island reef waters meet the needs of fish communities for growth, reproduction, development and protection from natural predators. They are good habitats for many species. Environmental DNA (eDNA) metabarcoding technology, which combines universal primers with high-throughput sequencing (high-throughput sequencing, HTS) technology, facilitates the amplification of eDNA from multiple target groups and has great potential in establishing or improving the assessment of species diversity. Zhoushan archipelago is the largest archipelago in China, which consisting of 2 085 islands. A total of 27 water samples were collected from nine stations in Zhoushan and its adjacent waters in May 2019 in this study to better understand the species composition of the major fish communities in Zhoushan and its adjacent waters and to monitor and protect their diversity. eDNA metabarcoding technique was used to determine the fish community composition. The results showed that 52 species of fish were detected in Zhoushan and its adjacent waters, belonging to 19 orders, 36 families and 49 genera. Four species were only annotated to genus-level. Perciformes and Scombriformes account for the highest proportion, 28.85% and 15.38%, respectively. The dominant species in different sea areas were quite different. The distribution trends of the Shannon, Simpson, and Pielou indices were basically the same. They all showed the trend as Zhoushan offshore waters > Yangtze River estuary > Zhoushan offshore waters. The variation of eDNA in different water layers could be roughly divided into three trends, and the trend of most fish species' sequence abundance between water layers was highly consistent with their habitat preference. In addition, by comparing the results with other scholars, it was found that the eDNA metabarcoding results in the same sea area at the same time varied greatly, which indicated that the repeatability of the eDNA technology was less reproducible and should be used with caution in the field of fisheries resources monitoring. Therefore, eDNA technology can only partially replace traditional survey methods at present. In the future, eDNA metabarcoding can be used as an adjunct to fishery resource monitoring to improve detection efficiency and reduce interference with ecosystems. This study can provide new ideas and methods for the study of fish communities in island reef waters.

  • [1]
    Loreau M, Naeem S, Inchausti P, et al. Biodiversity and ecosystem functioning: current knowledge and future challenges[J]. Science, 2001, 294(5543): 804-808. doi: 10.1126/science.1064088
    [2]
    Zhang Y, Pavlovska M, Stoica E, et al. Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding approach: from bacteria to marine mammals[J]. Environment International, 2020, 135: 105307. doi: 10.1016/j.envint.2019.105307
    [3]
    Fraija-Fernández N, Bouquieaux M C, Rey A, et al. Marine water environmental DNA metabarcoding provides a comprehensive fish diversity assessment and reveals spatial patterns in a large oceanic area[J]. Ecology and Evolution, 2020, 10(14): 7560-7584. doi: 10.1002/ece3.6482
    [4]
    Heino M, Porteiro F M, Sutton T T, et al. Catchability of pelagic trawls for sampling deep-living nekton in the mid-North Atlantic[J]. ICES Journal of Marine Science, 2011, 68(2): 377-389. doi: 10.1093/icesjms/fsq089
    [5]
    Fraser H M, Greenstreet S P R, Piet G J. Taking account of catchability in groundfish survey trawls: implications for estimating demersal fish biomass[J]. ICES Journal of Marine Science, 2007, 64(9): 1800-1819. doi: 10.1093/icesjms/fsm145
    [6]
    Aylagas E, Borja Á, Irigoien X, et al. Benchmarking DNA metabarcoding for biodiversity-based monitoring and assessment[J]. Frontiers in Marine Science, 2016, 3: 96.
    [7]
    Thomsen P F, Willerslev E. Environmental DNA-An emerging tool in conservation for monitoring past and present biodiversity[J]. Biological Conservation, 2015, 183: 4-18. doi: 10.1016/j.biocon.2014.11.019
    [8]
    Taberlet P, Coissac E, Hajibabaei M, et al. Environmental DNA[J]. Molecular Ecology, 2012, 21(8): 1789-1793. doi: 10.1111/j.1365-294X.2012.05542.x
    [9]
    Wang X Y, Lu G Q, Zhao L L, et al. Assessment of fishery resources using environmental DNA: the large yellow croaker (Larimichthys crocea) in the East China Sea[J]. Fisheries Research, 2021, 235: 105813. doi: 10.1016/j.fishres.2020.105813
    [10]
    Wang X Y, Lu G Q, Zhao L L, et al. Assessment of fishery resources using environmental DNA: small yellow croaker (Larimichthys polyactis) in East China Sea[J]. PLoS One, 2020, 15(12): e0244495. doi: 10.1371/journal.pone.0244495
    [11]
    Ficetola G F, Miaud C, Pompanon F, et al. Species detection using environmental DNA from water samples[J]. Biology Letters, 2008, 4(4): 423-425. doi: 10.1098/rsbl.2008.0118
    [12]
    Deiner K, Bik H M, Mächler E, et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities[J]. Molecular Ecology, 2017, 26(21): 5872-5895. doi: 10.1111/mec.14350
    [13]
    Li F L, Peng Y, Fang W D, et al. Application of environmental DNA metabarcoding for predicting anthropogenic pollution in rivers[J]. Environmental Science & Technology, 2018, 52(20): 11708-11719.
    [14]
    Zhang H, Yoshizawa S, Iwasaki W, et al. Seasonal fish assemblage structure using environmental DNA in the Yangtze Estuary and its adjacent waters[J]. Frontiers in Marine Science, 2019, 6: 515. doi: 10.3389/fmars.2019.00515
    [15]
    Zhou S, Fan C R, Xia H M, et al. Combined use of eDNA metabarcoding and bottom trawling for the assessment of fish biodiversity in the Zhoushan sea[J]. Frontiers in Marine Science, 2022, 8: 809703. doi: 10.3389/fmars.2021.809703
    [16]
    Yang J H, Zhang X W, Xie Y W, et al. Zooplankton community profiling in a eutrophic freshwater ecosystem-lake Tai Basin by DNA metabarcoding[J]. Scientific Reports, 2017, 7(1): 1773. doi: 10.1038/s41598-017-01808-y
    [17]
    徐念, 常剑波. 长江中下游干流环境DNA样本鱼类物种检测的初步研究[J]. 水生态学杂志, 2016, 37(5): 49-55.

    Xu N, Chang J B. Preliminary study on fish species detection in the middle and lower Yangtze River using environmental DNA[J]. Journal of Hydroecology, 2016, 37(5): 49-55 (in Chinese).
    [18]
    蒋佩文, 李敏, 张帅, 等. 基于环境DNA宏条码和底拖网的珠江河口鱼类多样性[J]. 水生生物学报, 2022, 46(11): 1701-1711. doi: 10.7541/2022.2021.0265

    Jiang P W, Li M, Zhang S, et al. Investigating the fish diversity in Pearl River Estuary based on environmental DNA matebarcoding and bottom trawling[J]. Acta Hydrobiologica Sinica, 2022, 46(11): 1701-1711 (in Chinese). doi: 10.7541/2022.2021.0265
    [19]
    舒璐, 林佳艳, 徐源, 等. 基于环境DNA宏条形码的洱海鱼类多样性研究[J]. 水生生物学报, 2020, 44(5): 1080-1086.

    Shu L, Lin J Y, Xu Y, et al. Investigating the fish diversity in Erhai Lake based on environmental DNA metabarcoding[J]. Acta Hydrobiologica Sinica, 2020, 44(5): 1080-1086 (in Chinese).
    [20]
    王晨, 陶孟, 李爱民, 等. 基于环境DNA宏条形码技术的秦淮河生物多样性研究[J]. 生态学报, 2022, 42(2): 611-624.

    Wang C, Tao M, Li A M, et al. Research on the biodiversity of Qinhuai River based on environmental DNA metabacroding[J]. Acta Ecologica Sinica, 2022, 42(2): 611-624 (in Chinese).
    [21]
    凌建忠, 姜亚洲, 孙鹏, 等. 环境DNA技术在象山港水域鱼类多样性调查中的应用与评估[J]. 中国水产科学, 2021, 28(2): 205-214. doi: 10.12264/JFSC2020-0219

    Ling J Z, Jiang Y Z, Sun P, et al. Application and evaluation of environmental DNA technology in fish diversity research in Xiangshan Bay[J]. Journal of Fishery Sciences of China, 2021, 28(2): 205-214 (in Chinese). doi: 10.12264/JFSC2020-0219
    [22]
    徐欣靖, 皮杰, 李德亮, 等. 环境DNA技术在湖泊生物资源调查中的应用进展[J]. 水产养殖, 2022, 43(3): 1-7. doi: 10.3969/j.issn.1004-2091.2022.03.001

    Xu X J, Pi J, Li D L, et al. Advances in the application of environmental DNA technology in the survey of lake biological resources[J]. Journal of Aquaculture, 2022, 43(3): 1-7 (in Chinese). doi: 10.3969/j.issn.1004-2091.2022.03.001
    [23]
    金显仕, 单秀娟, 郭学武, 等. 长江口及其邻近海域渔业生物的群落结构特征[J]. 生态学报, 2009, 29(9): 4761-4772.

    Jin X S, Shan X J, Guo X W, et al. Community structure of fishery biology in the Yangtze River estuary and its adjacent waters[J]. Acta Ecologica Sinica, 2009, 29(9): 4761-4772 (in Chinese).
    [24]
    赵盛龙, 钟俊生. 舟山海域鱼类原色图鉴[M]. 杭州: 浙江科学技术出版社, 2006.

    Zhao S L, Zhong J S. Fish primary color map in Zhoushan Sea area[M]. Hangzhou: Zhejiang Science and Technology Publishing House, 2006 (in Chinese).
    [25]
    吴鹏, 倪勇强, 孙毛明, 等. 舟山钓梁围垦一期工程对附近海域生态系统影响研究[J]. 海洋通报, 2013, 32(5): 540-547,552.

    Wu P, Ni Y Q, Sun M M, et al. Influence of phase 1 of Diaoliang reclamation project on the ecosystem of adjacent sea area[J]. Marine Science Bulletin, 2013, 32(5): 540-547,552 (in Chinese).
    [26]
    俞存根, 张平, 郭朋军, 等. 围填海区渔业生态损害的补偿标准定量研究——以舟山近岸海域为例[J]. 生态学报, 2019, 39(4): 1416-1425.

    Yu C G, Zhang P, Guo P J, et al. Quantitative study on compensation standards for ecological damage to fishery in reclaimed areas: a case study from Zhoushan coast[J]. Acta Ecologica Sinica, 2019, 39(4): 1416-1425 (in Chinese).
    [27]
    叶文建, 杜萍, 寿鹿, 等. 舟山海域大中型浮游动物群落时空变化及受控要素[J]. 生态学报, 2021, 41(1): 254-267.

    Ye W J, Du P, Shou L, et al. Spatio-temporal variation of marco and mesozooplankton communities and the controlling factors around Zhoushan archipelago[J]. Acta Ecologica Sinica, 2021, 41(1): 254-267 (in Chinese).
    [28]
    高天翔, 陈治, 王晓艳. 近海鱼类多样性调查新方法—环境DNA分析技术[J]. 浙江海洋大学学报(自然科学版), 2018, 37(1): 1-7.

    Gao T X, Chen Z, Wang X Y. Environmental DNA, a new method for fish diversity investigation in the coastal waters[J]. Journal of Zhejiang Ocean University (Natural Science), 2018, 37(1): 1-7 (in Chinese).
    [29]
    Wu Q Q, Sakata M K, Wu D Y, et al. Application of environmental DNA metabarcoding in a lake with extensive algal blooms[J]. Limnology, 2021, 22(3): 363-370. doi: 10.1007/s10201-021-00663-1
    [30]
    Miya M, Sato Y, Fukunaga T, et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species[J]. Royal Society Open Science, 2015, 2(7): 150088. doi: 10.1098/rsos.150088
    [31]
    Sato Y, Miya M, Fukunaga T, et al. MitoFish and MiFish pipeline: a mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding[J]. Molecular Biology and Evolution, 2018, 35(6): 1553-1555. doi: 10.1093/molbev/msy074
    [32]
    Hering D, Borja A, Jones J I, et al. Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive[J]. Water Research, 2018, 138: 192-205. doi: 10.1016/j.watres.2018.03.003
    [33]
    Knudsen S W, Ebert R B, Hesselsøe M, et al. Species-specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea[J]. Journal of Experimental Marine Biology and Ecology, 2019, 510: 31-45. doi: 10.1016/j.jembe.2018.09.004
    [34]
    Lacoursière-Roussel A, Côté G, Leclerc V, et al. Quantifying relative fish abundance with eDNA: a promising tool for fisheries management[J]. Journal of Applied Ecology, 2016, 53(4): 1148-1157. doi: 10.1111/1365-2664.12598
    [35]
    Thomsen P F, Kielgast J, Iversen L L, et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples[J]. PLoS One, 2012, 7(8): e41732. doi: 10.1371/journal.pone.0041732
    [36]
    Jeunen G J, Knapp M, Spencer H G, et al. Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement[J]. Molecular Ecology Resources, 2019, 19(2): 426-438. doi: 10.1111/1755-0998.12982
    [37]
    史赟荣, 晁敏, 全为民, 等. 长江口鱼类群落的多样性分析[J]. 中国水产科学, 2012, 19(6): 1051-1059.

    Shi Y R, Chao M, Quan W M, et al. Fish community diversity analyses in the Yangtze River estuary, China[J]. Journal of Fishery Sciences of China, 2012, 19(6): 1051-1059 (in Chinese).
    [38]
    李建生, 李圣法, 程家骅. 长江口渔场鱼类组成和多样性[J]. 海洋渔业, 2006, 28(1): 37-41. doi: 10.3969/j.issn.1004-2490.2006.01.007

    Li J S, Li S F, Cheng J H. The composition and diversity of fishes on fishing grounds of Changjiang estuary[J]. Marine Fisheries, 2006, 28(1): 37-41 (in Chinese). doi: 10.3969/j.issn.1004-2490.2006.01.007
    [39]
    张涛, 庄平, 刘健, 等. 长江口崇明东滩鱼类群落组成和生物多样性[J]. 生态学杂志, 2009, 28(10): 2056-2062.

    Zhang T, Zhuang P, Liu J, et al. Species composition and biodiversity of fish community in Chongming Dongtan of Yangtze River estuary[J]. Chinese Journal of Ecology, 2009, 28(10): 2056-2062 (in Chinese).
    [40]
    单秀娟, 金显仕. 长江口近海春季鱼类群落结构的多样性研究[J]. 海洋与湖沼, 2011, 42(1): 32-40.

    Shan X J, Jin X S. Diversity of fish community structure in the spring-time offshore waters at the Yangtze River estuary[J]. Oceanologia et Limnologia Sinica, 2011, 42(1): 32-40 (in Chinese).
    [41]
    于南京, 俞存根, 许永久, 等. 舟山群岛外海域春秋季鱼类群落结构及生物多样性[J]. 水产学报, 2021, 45(8): 1374-1383.

    Yu N J, Yu C G, Xu Y J, et al. Fish community structure and biodiversity in the offshore waters of Zhoushan Islands in spring and autumn[J]. Journal of Fisheries of China, 2021, 45(8): 1374-1383 (in Chinese).
    [42]
    戴小杰, 杨志金, 田思泉, 等. 浙江南部近海鱼类分类多样性研究[J]. 海洋学报, 2019, 41(8): 43-51.

    Dai X J, Yang Z J, Tian S Q, et al. Taxonomic diversity of fish species in the off southern Zhejiang, East China Sea[J]. Haiyang Xuebao, 2019, 41(8): 43-51 (in Chinese).
    [43]
    陆延, 牛威震, 程爱勇, 等. 舟山岛北部海域鱼类群落结构及其生物多样性[J/OL]. 大连海洋大学学报, 2022: 1-14. (2022-03-21). https://doi.org/10.16535/j.cnki.dlhyxb.2022-006.

    Lu Y, Niu Z W, Chen A Y, et al. Fish community structure and biodiversity in the northern sea area of Zhoushan island[J/OL]. Journal of Dalian Ocean University, 2022: 1-14. (2022-03-21). https://doi.org/10.16535/j.cnki.dlhyxb.2022-006 (in Chinese).
    [44]
    叶深, 俞存根, 周青松, 等. 舟山崎头洋海域春秋季鱼类种类组成及数量分布[J]. 福建水产, 2014, 36(1): 35-46. doi: 10.3969/j.issn.1006-5601.2014.01.006

    Ye S, Yu C G, Zhou Q S, et al. Species composition and quantitative distribution of fishes in the Qitou Sea, Zhoushan[J]. Journal of Fujian Fisheries, 2014, 36(1): 35-46 (in Chinese). doi: 10.3969/j.issn.1006-5601.2014.01.006
    [45]
    赵盛龙. 浙江鱼类资源大集合[J]. 海洋世界, 2013(9): 14-17.

    Zhao S L. Large collection of fish resources in Zhejiang province[J]. Ocean World, 2013(9): 14-17 (in Chinese).
    [46]
    林楠, 苗振清, 卢占晖. 东海中部夏季鱼类群落结构及其多样性分析[J]. 广东海洋大学学报, 2009, 29(3): 42-47. doi: 10.3969/j.issn.1673-9159.2009.03.009

    Lin N, Miao Z Q, Lu Z H. Structure and diversity of fish communities in summer in the middle of the East China Sea[J]. Journal of Guangdong Ocean University, 2009, 29(3): 42-47 (in Chinese). doi: 10.3969/j.issn.1673-9159.2009.03.009
    [47]
    李圣法. 东海大陆架鱼类群落生态学研究—空间格局及其多样性[D]. 上海: 华东师范大学, 2005.

    Li S F. The ecological study for fish community in the East China Sea continental shelf: the spatial pattern and diversity[D]. Shanghai: East China Normal University, 2005 (in Chinese).
    [48]
    李圣法, 程家骅, 李长松, 等. 东海中部鱼类群落多样性的季节变化[J]. 海洋渔业, 2005, 27(2): 113-119. doi: 10.3969/j.issn.1004-2490.2005.02.005

    Li S F, Cheng J H, Li C S, et al. Seasonal Changes on fish community diversity in the middle part of the East China Sea[J]. Marine Fisheries, 2005, 27(2): 113-119 (in Chinese). doi: 10.3969/j.issn.1004-2490.2005.02.005
    [49]
    苏奋振, 张甲珅, 杜云艳, 等. 东海区中上层鱼类资源的时空分异[J]. 自然资源学报, 2004, 19(5): 591-596. doi: 10.11849/zrzyxb.2004.05.007

    Su Z F, Zhang J, Du Y Y, et al. Spatiotemporal variations of pelagic fishery resources in East China Sea[J]. Journal of Natural Resources, 2004, 19(5): 591-596 (in Chinese). doi: 10.11849/zrzyxb.2004.05.007
    [50]
    蒋巧丽, 许永久, 俞存根, 等. 2016年夏季长江口邻近海域浮游动物群落结构[J]. 应用生态学报, 2018, 29(9): 3078-3084. doi: 10.13287/j.1001-9332.201809.004

    Jiang Q L, Xu Y J, Yu C G, et al. Community structure of zooplankton in adjacent area of Changjiang Estuary, China in summer 2016[J]. Chinese Journal of Applied Ecology, 2018, 29(9): 3078-3084 (in Chinese). doi: 10.13287/j.1001-9332.201809.004
    [51]
    Zhong W J, Zhang J Y, Wang Z H, et al. Holistic impact evaluation of human activities on the coastal fish biodiversity in the Chinese coastal environment[J]. Environmental Science & Technology, 2022, 56(10): 6574-6583.
    [52]
    李晓玲, 刘洋, 王丛丛, 等. 基于环境DNA技术的夏季东海鱼类物种多样性研究[J]. 海洋学报, 2022, 44(4): 74-84.

    Li X L, Liu Y, Wang C C, et al. Study on fish species diversity in the East China Sea in summer based on environmental DNA technology[J]. Haiyang Xuebao, 2022, 44(4): 74-84 (in Chinese).
    [53]
    陈治, 宋娜, 源利文, 等. 舟山近海水样环境DNA获取方法的建立[J]. 水生生物学报, 2020, 44(1): 50-58. doi: 10.7541/2020.007

    Chen Z, Song N, Minamoto T, et al. The eDNA collection method of Zhoushan coastal waters[J]. Acta Hydrobiologica Sinica, 2020, 44(1): 50-58 (in Chinese). doi: 10.7541/2020.007
    [54]
    Jeunen G J, Knapp M, Spencer H G, et al. Species-level biodiversity assessment using marine environmental DNA metabarcoding requires protocol optimization and standardization[J]. Ecology and Evolution, 2019, 9(3): 1323-1335. doi: 10.1002/ece3.4843
    [55]
    张启龙, 王凡, 赵卫红, 等. 舟山渔场及其邻近海域水团的季节特征[J]. 海洋学报, 2007, 29(5): 1-9.

    Zhang Q L, Wang F, Zhao W H, et al. Seasonal characteristics in the water masses in Zhoushan fishing ground and adjacent region[J]. Acta Oceanologica Sinica, 2007, 29(5): 1-9 (in Chinese).
    [56]
    侯伟芬, 俞成根, 陈小庆. 舟山渔场的水温分布特征分析[J]. 宁波大学学报(理工版), 2013, 26(3): 31-34.

    Hou W F, Yu C G, Chen X Q. Temperature distribution in Zhoushan fishing ground[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2013, 26(3): 31-34 (in Chinese).
    [57]
    陈治, 陈建威, 王晓艳, 等. 舟山近海环境DNA保存方法的建立及优化[J]. 海洋与湖沼, 2019, 50(5): 1098-1107. doi: 10.11693/hyhz20190200034

    Chen Z, Chen J W, Wang X Y, et al. Establishment and optimization of the eDNA preservation method for Zhoushan coastal waters[J]. Oceanologia et Limnologia Sinica, 2019, 50(5): 1098-1107 (in Chinese). doi: 10.11693/hyhz20190200034
    [58]
    Kelly R P, Port J A, Yamahara K M, et al. Using environmental DNA to census marine fishes in a large mesocosm[J]. PLoS One, 2014, 9(1): e86175. doi: 10.1371/journal.pone.0086175
    [59]
    Maruyama A, Nakamura K, Yamanaka H, et al. The release rate of environmental DNA from juvenile and adult fish[J]. PLoS One, 2014, 9(12): e114639. doi: 10.1371/journal.pone.0114639
    [60]
    Post J R, Lee J A. Metabolic ontogeny of teleost fishes[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1996, 53(4): 910-923. doi: 10.1139/f95-278
    [61]
    Strickler K M, Fremier A K, Goldberg C S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms[J]. Biological Conservation, 2015, 183: 85-92. doi: 10.1016/j.biocon.2014.11.038
    [62]
    Hansen B K, Bekkevold D, Clausen L W, et al. The sceptical optimist: Challenges and perspectives for the application of environmental DNA in marine fisheries[J]. Fish and Fisheries, 2018, 19(5): 751-768. doi: 10.1111/faf.12286
    [63]
    Jane S F, Wilcox T M, Mckelvey K S, et al. Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams[J]. Molecular Ecology Resources, 2015, 15(1): 216-227. doi: 10.1111/1755-0998.12285
    [64]
    Roussel J M, Paillisson J M, Tréguier A, et al. The downside of eDNA as a survey tool in water bodies[J]. Journal of Applied Ecology, 2015, 52(4): 823-826. doi: 10.1111/1365-2664.12428
    [65]
    Merkes C M, Mccalla S G, Jensen N R, et al. Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data[J]. PLoS One, 2014, 9(11): e113346. doi: 10.1371/journal.pone.0113346
    [66]
    Thomsen P F, Møller P R, Sigsgaard E E, et al. Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes[J]. PLoS One, 2016, 11(11): e0165252. doi: 10.1371/journal.pone.0165252
    [67]
    Yamamoto S, Minami K, Fukaya K, et al. Environmental DNA as a ‘Snapshot’ of fish distribution: a case study of Japanese Jack Mackerel in Maizuru Bay, Sea of Japan[J]. PLoS One, 2016, 11(3): e0149786. doi: 10.1371/journal.pone.0149786
    [68]
    Heath M R, Cook R M, Cameron A I, et al. Cascading ecological effects of eliminating fishery discards[J]. Nature Communications, 2014, 5: 3893. doi: 10.1038/ncomms4893
    [69]
    陈治, 蔡杏伟, 张清凤, 等. 海南岛淡水鱼类环境DNA宏条形码参考数据库的初步构建及比较分析[J]. 南方水产科学, 2022, 18(3): 1-12. doi: 10.12131/20210339

    Chen Z, Cai X W, Zhang Q F, et al. Preliminary construction and comparative analysis of environmental DNA metabarcoding reference database of freshwater fishes in Hainan Island[J]. South China Fisheries Science, 2022, 18(3): 1-12 (in Chinese). doi: 10.12131/20210339
    [70]
    蒋佩文, 李敏, 张帅, 等. 基于线粒体CO I和12S rDNA基因构建珠江河口鱼类DNA宏条形码数据库[J]. 南方水产科学, 2022, 18(3): 13-21. doi: 10.12131/20210210

    Jiang P W, Li M, Zhang S, et al. Construction of DNA meta-barcode database of fish in Pearl River Estuary based on mitochondrial cytochrome CO I and 12S rDNA gene[J]. South China Fisheries Science, 2022, 18(3): 13-21 (in Chinese). doi: 10.12131/20210210

Catalog

    Article views (114) PDF downloads (18) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return