• ISSN 1000-0615
  • CN 31-1283/S
ZHOU Hangxian, TAO Mingwei, WEI Jie, ZHAO Jianhua, XU Qiyou. Effect of replacing glucose with soybean oligosaccharides on microbial community structure in biofloc system[J]. Journal of fisheries of china, 2024, 48(11): 119613. DOI: 10.11964/jfc.20230614058
Citation: ZHOU Hangxian, TAO Mingwei, WEI Jie, ZHAO Jianhua, XU Qiyou. Effect of replacing glucose with soybean oligosaccharides on microbial community structure in biofloc system[J]. Journal of fisheries of china, 2024, 48(11): 119613. DOI: 10.11964/jfc.20230614058

Effect of replacing glucose with soybean oligosaccharides on microbial community structure in biofloc system

Funds: Zhejiang Province Agricultural Major Technology Cooperative Promotion Plan (2022XTTGSC01); Natural Science Foundation of Zhejiang Province ( LTGN23C190002 )
More Information
  • The study investigated the effects of soybean oligosaccharides (SBOS) on the microbial community structure within a biofloc system and identified the optimal concentration. The control group utilized glucose as carbon source, whereas experimental groups replaced it with 2.5%, 5.0%, 7.5%, and 10.0% SBOS, respectively. Ammonium chloride served as the nitrogen source with C/N ratio of 15, and Bacillus subtilis was introduced to establish the biofloc system. The results indicated that total nitrogen, ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen concentrations in the water were reduced, with no significant differences observed among all groups (P>0.05). High-throughput 16S rRNA sequencing revealed that Proteobacteria was the dominant phylum at 14 days in both experimental and control groups. By 28 days, Proteobacteria and Bacteroidota proportions were similar. At the genus level, Bacillus abundance significantly increased in the SBOS-2.5 and SBOS-10.0 groups at 14 days (P<0.05), while Aeromonadaceae abundance significantly decreased (P<0.05). At day 28, Flavobacterium abundance significantly increased in the SBOS-2.5 and SBOS-10.0 groups compared to the control group (P<0.05). Additionally, Chryseobacterium abundance in all experimental groups was significantly lower than control group (P<0.05). Some bacteria may be crucial in the nitrification and denitrification of nitrogen in water, according to a correlation analysis between bacterial composition and environmental conditions. In conclusion, substituting glucose with 2.5% and 10.0% SBOS as the carbon source in bioflocs effectively enhanced the abundance of beneficial bacteria and reduced that of harmful bacteria, thus promoting the stability of bacterial communities in water. Considering experimental outcomes and application costs, a 2.5% SBOS replacement ratio for glucose is recommended. This study provides a foundation for the practical application of SBOS as a carbon source in the biofloc systems and offers insights for future research.

  • [1]
    Boyd C E. Guidelines for aquaculture effluent management at the farm-level[J]. Aquaculture, 2003, 226(1-4): 101-112. doi: 10.1016/S0044-8486(03)00471-X
    [2]
    Avnimelech Y. Carbon/nitrogen ratio as a control element in aquaculture systems[J]. Aquaculture, 1999, 176(3-4): 227-235. doi: 10.1016/S0044-8486(99)00085-X
    [3]
    Burford M A, Thompson P J, McIntosh R P, et al. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system[J]. Aquaculture, 2004, 232(1-4): 525-537. doi: 10.1016/S0044-8486(03)00541-6
    [4]
    Liu W C, Ke H Y, Xie J, et al. Characterizing the water quality and microbial communities in different zones of a recirculating aquaculture system using biofloc biofilters[J]. Aquaculture, 2020, 529: 735624. doi: 10.1016/j.aquaculture.2020.735624
    [5]
    Ebeling J M, Timmons M B, Bisogni J J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems[J]. Aquaculture, 2006, 257(1-4): 346-358. doi: 10.1016/j.aquaculture.2006.03.019
    [6]
    Kim S K, Pang Z G, Seo H C, et al. Effect of bioflocs on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei postlarvae[J]. Aquaculture Research, 2014, 45(2): 362-371. doi: 10.1111/are.12319
    [7]
    Martins M A, Poli M A, Legarda E C, et al. Heterotrophic and mature biofloc systems in the integrated culture of Pacific white shrimp and Nile tilapia[J]. Aquaculture, 2020, 514: 734517. doi: 10.1016/j.aquaculture.2019.734517
    [8]
    Yun H S, Kim D H, Kim J G, et al. The microbial communities (bacteria, algae, zooplankton, and fungi) improved biofloc technology including the nitrogen-related material cycle in Litopenaeus vannamei farms[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 883522. doi: 10.3389/fbioe.2022.883522
    [9]
    Pacheco-Vega J M, Cadena-Roa M A, Leyva-Flores J A, et al. Effect of isolated bacteria and microalgae on the biofloc characteristics in the Pacific white shrimp culture[J]. Aquaculture Reports, 2018, 11: 24-30. doi: 10.1016/j.aqrep.2018.05.003
    [10]
    El-Sayed A F M. Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade[J]. Reviews in Aquaculture, 2021, 13(1): 676-705. doi: 10.1111/raq.12494
    [11]
    Aguilera-Rivera D, Rodríguez-Fuentes G, Escalante-Herrera K S, et al. Differential expression of immune-related genes in Pacific white shrimp, Litopenaeus vannamei, previously reared in biofloc and challenged with Vibrio harveyi[J]. Aquaculture Research, 2019, 50(8): 2039-2046. doi: 10.1111/are.14063
    [12]
    Aguilera-Rivera D, Prieto-Davó A, Rodríguez-Fuentes G, et al. A vibriosis outbreak in the Pacific white shrimp, Litopenaeus vannamei reared in biofloc and clear seawater[J]. Journal of Invertebrate Pathology, 2019, 167: 107246. doi: 10.1016/j.jip.2019.107246
    [13]
    Aguilera-Rivera D, Escalante-Herrera K, Gaxiola G, et al. Immune response of the Pacific white shrimp, Litopenaeus vannamei, previously reared in biofloc and after an infection assay with Vibrio harveyi[J]. Journal of the World Aquaculture Society, 2019, 50(1): 119-136. doi: 10.1111/jwas.12543
    [14]
    James G, Das B C, Jose S, et al. Bacillus as an aquaculture friendly microbe[J]. Aquaculture International, 2021, 29(1): 323-353.
    [15]
    Ahmad H I, Verma A K, Rani A M B, et al. Growth, non-specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources[J]. Aquaculture, 2016, 457: 61-67. doi: 10.1016/j.aquaculture.2016.02.011
    [16]
    Hollender J, van der Krol D, Kornberger L, et al. Effect of different carbon sources on the enhanced biological phosphorus removal in a sequencing batch reactor[J]. World Journal of Microbiology and Biotechnology, 2002, 18(4): 359-364. doi: 10.1023/A:1015258308460
    [17]
    Wei Y F, Liao S A, Wang A L. The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs[J]. Aquaculture, 2016, 465: 88-93. doi: 10.1016/j.aquaculture.2016.08.040
    [18]
    Mansour A T, Ashry O A, El-Neweshy M S, et al. Effect of agricultural by-products as a carbon source in a biofloc-based system on growth performance, digestive enzyme activities, hepatopancreas histology, and gut bacterial load of Litopenaeus vannamei post larvae[J]. Journal of Marine Science and Engineering, 2022, 10(10): 1333. doi: 10.3390/jmse10101333
    [19]
    da Rocha A F, Barbosa V M, Wasielesky Jr W, et al. Water quality and juvenile development of mullet Mugil liza in a biofloc system with an additional carbon source: dextrose, liquid molasses or rice bran?[J]. Aquaculture Research, 2022, 53(3): 870-883. doi: 10.1111/are.15628
    [20]
    Soliman A M, Abdel-Tawwab M. Effects of different carbon sources on water quality, biofloc quality, and the productivity of Nile tilapia reared in biofloc-based ponds[J]. Annals of Animal Science, 2022, 22(4): 1281-1289. doi: 10.2478/aoas-2022-0025
    [21]
    Vilani F G, Schveitzer R, da Fonseca Arantes R, et al. Strategies for water preparation in a biofloc system: effects of carbon source and fertilization dose on water quality and shrimp performance[J]. Aquacultural Engineering, 2016, 74: 70-75. doi: 10.1016/j.aquaeng.2016.06.002
    [22]
    Pan L, Farouk M H, Qin G X, et al. The influences of soybean agglutinin and functional oligosaccharides on the intestinal tract of monogastric animals[J]. International Journal of Molecular Sciences, 2018, 19(2): 554. doi: 10.3390/ijms19020554
    [23]
    Zhao C, Wu Y J, Liu X Y, et al. Functional properties, structural studies and chemo-enzymatic synthesis of oligosaccharides[J]. Trends in Food Science & Technology, 2017, 66: 135-145.
    [24]
    Hu X, Yang H L, Yan Y Y, et al. Effects of fructooligosaccharide on growth, immunity and intestinal microbiota of shrimp (Litopenaeus vannamei) fed diets with fish meal partially replaced by soybean meal[J]. Aquaculture Nutrition, 2019, 25(1): 194-204. doi: 10.1111/anu.12843
    [25]
    Xu Q, Chao Y L, Wan Q B. Health benefit application of functional oligosaccharides[J]. Carbohydrate Polymers, 2009, 77(3): 435-441. doi: 10.1016/j.carbpol.2009.03.016
    [26]
    Fei B B, Ling L, Hua C, et al. Effects of soybean oligosaccharides on antioxidant enzyme activities and insulin resistance in pregnant women with gestational diabetes mellitus[J]. Food Chemistry, 2014, 158: 429-432. doi: 10.1016/j.foodchem.2014.02.106
    [27]
    Ma Y, Wu X Z, Giovanni V, et al. Effects of soybean oligosaccharides on intestinal microbial communities and immune modulation in mice[J]. Saudi Journal of Biological Sciences, 2017, 24(1): 114-121. doi: 10.1016/j.sjbs.2016.09.004
    [28]
    Coon C N, Leske K L, Akavanichan O, et al. Effect of oligosaccharide-free soybean meal on true metabolizable energy and fiber digestion in adult roosters[J]. Poultry Science, 1990, 69(5): 787-793. doi: 10.3382/ps.0690787
    [29]
    Ringø E, Olsen R E, Gifstad T Ø, et al. Prebiotics in aquaculture: a review[J]. Aquaculture Nutrition, 2010, 16(2): 117-136. doi: 10.1111/j.1365-2095.2009.00731.x
    [30]
    贺希, 罗国芝, 谭洪新. 枯草芽孢杆菌添加剂对生物絮团菌群结构和营养成分的影响[J]. 上海海洋大学学报, 2022, 31(4): 873-882.

    He X, Luo G Z, Tan H X. Effect of adding Bacillus subtilis on the microbial community structure and nutrition of bioflocs[J]. Journal of Shanghai Ocean University, 2022, 31(4): 873-882 (in Chinese).
    [31]
    Wang M Y, Liu Y, Luo K, et al. Effects of Bacillus pumilus BP-171 and carbon sources on the growth performance of shrimp, water quality and bacterial community in Penaeus vannamei culture system[J]. Water, 2022, 14(24): 4037. doi: 10.3390/w14244037
    [32]
    Avnimelech Y, Kochba M. Evaluation of nitrogen uptake and excretion by tilapia in biofloc tanks, using 15N tracing[J]. Aquaculture, 2009, 287(1-2): 163-168. doi: 10.1016/j.aquaculture.2008.10.009
    [33]
    Dauda A B. Biofloc technology: a review on the microbial interactions, operational parameters and implications to disease and health management of cultured aquatic animals[J]. Reviews in Aquaculture, 2020, 12(2): 1193-1210. doi: 10.1111/raq.12379
    [34]
    Abakari G, Luo G Z, Kombat E O, et al. Supplemental carbon sources applied in biofloc technology aquaculture systems: types, effects and future research[J]. Reviews in Aquaculture, 2021, 13(3): 1193-1222. doi: 10.1111/raq.12520
    [35]
    Deng M, Chen J Y, Gou J W, et al. The effect of different carbon sources on water quality, microbial community and structure of biofloc systems[J]. Aquaculture, 2018, 482: 103-110. doi: 10.1016/j.aquaculture.2017.09.030
    [36]
    Avnimelech Y. Biofloc technology: a practical guide book[M]. Baton Rouge: World Aquaculture Society, 2009.
    [37]
    Nootong K, Pavasant P, Powtongsook S. Effects of organic carbon addition in controlling inorganic nitrogen concentrations in a biofloc system[J]. Journal of the World Aquaculture Society, 2011, 42(3): 339-346. doi: 10.1111/j.1749-7345.2011.00472.x
    [38]
    Kishawy A T Y, Sewid A H, Nada H S, et al. Mannanoligosaccharides as a carbon source in biofloc boost dietary plant protein and water quality, growth, immunity and Aeromonas hydrophila resistance in Nile tilapia (Oreochromis niloticus)[J]. Animals, 2020, 10(10): 1724. doi: 10.3390/ani10101724
    [39]
    Qiu Z S, Zhao J H, Luo Q H, et al. Effects of soybean oligosaccharides instead of glucose on growth, digestion, antioxidant capacity and intestinal flora of crucian carp cultured in biofloc system[J]. Aquaculture Reports, 2023, 29: 101512. doi: 10.1016/j.aqrep.2023.101512
    [40]
    Wei Y F, Wang A L, Liao S A. Effect of different carbon sources on microbial community structure and composition of ex-situ biofloc formation[J]. Aquaculture, 2020, 515: 734492. doi: 10.1016/j.aquaculture.2019.734492
    [41]
    Crab R, Chielens B, Wille M, et al. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae[J]. Aquaculture Research, 2010, 41(4): 559-567. doi: 10.1111/j.1365-2109.2009.02353.x
    [42]
    Ekasari J, Azhar M H, Surawidjaja E H, et al. Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources[J]. Fish & Shellfish Immunology, 2014, 41(2): 332-339.
    [43]
    Han Y, Ma H R, Liu Y L, et al. Effects of goat milk enriched with oligosaccharides on microbiota structures, and correlation between microbiota and short-chain fatty acids in the large intestine of the mouse[J]. Journal of Dairy Science, 2021, 104(3): 2773-2786. doi: 10.3168/jds.2020-19510
    [44]
    Gibson G R, Roberfroid M B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics[J]. The Journal of Nutrition, 1995, 125(6): 1401-1412. doi: 10.1093/jn/125.6.1401
    [45]
    Wu H X, Li W J, Shan C J, et al. Oligosaccharides improve the flesh quality and nutrition value of Nile tilapia fed with high carbohydrate diet[J]. Food Chemistry: Molecular Sciences, 2021, 3: 100040. doi: 10.1016/j.fochms.2021.100040
    [46]
    Qiu M, Liao S A, Wang B, et al. Effect of carbon source and C/N ratio on microbial community and function in ex situ biofloc system with inoculation of nitrifiers and aerobic denitrifying bacteria[J]. Aquaculture Research, 2021, 52(9): 4498-4511. doi: 10.1111/are.15288
    [47]
    仇宗胜, 钱仁东, 罗巧华, 等. 不同低聚糖对生物絮团形成及其菌群结构的影响[J]. 水产学报, 2024, 48(10): 109413-109413.

    Qiu Z S, Qian R D, Luo Q H, et al. Effects of different oligosaccharides on the formation of bioflocs and the structure of bacterial community[J]. Journal of Fisheries of China, 2024, 48(10): 109413-109413 (in Chinese).
    [48]
    Oliphant K, Ali M, D’Souza M, et al. Bacteroidota and Lachnospiraceae integration into the gut microbiome at key time points in early life are linked to infant neurodevelopment[J]. Gut Microbes, 2021, 13(1): 1997560.
    [49]
    Austin B, Austin D A. Aeromonadaceae representative (Aeromonas salmonicida)[M]//Austin B, Austin D A. Bacterial fish pathogens: disease of farmed and wild fish. 6th ed. Cham: Springer, 2016: 215-321.
    [50]
    Kirby J T, Sader H S, Walsh T R, et al. Antimicrobial susceptibility and epidemiology of a worldwide collection of Chryseobacterium spp.: report from the SENTRY Antimicrobial Surveillance Program (1997-2001)[J]. Journal of Clinical Microbiology, 2004, 42(1): 445-448. doi: 10.1128/JCM.42.1.445-448.2004
    [51]
    Krummenauer D, Poersch L, Romano L A, et al. The effect of probiotics in a Litopenaeus vannamei biofloc culture system infected with Vibrio parahaemolyticus[J]. Journal of Applied Aquaculture, 2014, 26(4): 370-379. doi: 10.1080/10454438.2014.965575
    [52]
    AftabUddin S, Siddique M A M, Sein A, et al. First use of biofloc technology for Penaeus monodon culture in Bangladesh: effects of stocking density on growth performance of shrimp, water quality and bacterial growth[J]. Aquaculture Reports, 2020, 18: 100518. doi: 10.1016/j.aqrep.2020.100518
    [53]
    Coyte K Z, Schluter J, Foster K R. The ecology of the microbiome: networks, competition, and stability[J]. Science, 2015, 350(6261): 663-666. doi: 10.1126/science.aad2602
    [54]
    Guo H P, Dong P S, Gao F, et al. Sucrose addition directionally enhances bacterial community convergence and network stability of the shrimp culture system[J]. npj Biofilms and Microbiomes, 2022, 8(1): 22. doi: 10.1038/s41522-022-00288-x
    [55]
    Gullian-Klanian M, Quintanilla-Mena M, Hau C P. Influence of the biofloc bacterial community on the digestive activity of Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 2023, 562: 738774. doi: 10.1016/j.aquaculture.2022.738774
    [56]
    Sugita H, Shibuya K, Shimooka H, et al. Antibacterial abilities of intestinal bacteria in freshwater cultured fish[J]. Aquaculture, 1996, 145(1-4): 195-203. doi: 10.1016/S0044-8486(96)01319-1
    [57]
    Abakari G, Luo G Z, Kombat E O. Dynamics of nitrogenous compounds and their control in biofloc technology (BFT) systems: a review[J]. Aquaculture and Fisheries, 2021, 6(5): 441-447. doi: 10.1016/j.aaf.2020.05.005
    [58]
    Ward B B, Bouskill N J. The utility of functional gene arrays for assessing community composition, relative abundance, and distribution of ammonia-oxidizing bacteria and archaea[J]. Methods in Enzymology, 2011, 496: 373-396.
    [59]
    Dong S, Li Y, Huang F, et al. Enhancing effect of Platymonas addition on water quality, microbial community diversity and shrimp performance in biofloc-based tanks for Penaeus vannamei nursery[J]. Aquaculture, 2022, 554: 738057. doi: 10.1016/j.aquaculture.2022.738057
    [60]
    Bal A, Anand R, Berge O, et al. Isolation and identification of diazotrophic bacteria from internal tissues of Pinus contorta and Thuja plicata[J]. Canadian Journal of Forest Research, 2012, 42(4): 807-813. doi: 10.1139/x2012-023

Catalog

    Article views (77) PDF downloads (17) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return