• ISSN 1000-0615
  • CN 31-1283/S
LIU Xiaorui, MA Xibo, ZHANG Nan, LI Min, LI Ke, JIAO Siqi, WANG Guiqin, KONG Yidi. Effects of chlorogenic acid in feed on the growth performance, digestive enzyme activity, immune function, and antioxidant capacity of loach (Misgurnus anguillicaudatus)[J]. Journal of fisheries of china, 2023, 47(10): 109609. DOI: 10.11964/jfc.20230614059
Citation: LIU Xiaorui, MA Xibo, ZHANG Nan, LI Min, LI Ke, JIAO Siqi, WANG Guiqin, KONG Yidi. Effects of chlorogenic acid in feed on the growth performance, digestive enzyme activity, immune function, and antioxidant capacity of loach (Misgurnus anguillicaudatus)[J]. Journal of fisheries of china, 2023, 47(10): 109609. DOI: 10.11964/jfc.20230614059

Effects of chlorogenic acid in feed on the growth performance, digestive enzyme activity, immune function, and antioxidant capacity of loach (Misgurnus anguillicaudatus)

Funds: Jilin Provincial Science and Technology Development Program Key R&D Project 20230202067NC; Seventh Batch of Jilin Provincial Young Science and Technology Talents Support Project (QT202303);China Agriculture Research System of MOF and MARA (CARS-46)
More Information
  • Corresponding author:

    KONG Yidi. E-mail: kongyidi68@163.com

  • Received Date: November 29, 2022
  • Revised Date: September 18, 2023
  • Available Online: October 26, 2023
  • (Objective) Taking loach as the research object, the effects of different concentrations of chlorogenic acid added to the feed on the growth performance, digestive enzyme activity, immune function and antioxidant capacity of loach were studied. (Method) Disease free and injury free loach, weighing 3.50 ± 0.01g/tail, was randomly divided into 5 groups. The basic feed was supplemented with 0, 200, 400, 600 and 800 mg/kg chlorogenic acid test feed, and each group was repeated for 56 days. After feeding test, the growth performance, digestive enzyme activity, biochemical indicators, immune function and antioxidant capacity of loach (Misgurnus anguillicaudatus) were determined. (Results) Compared with the control group, the final weight (FBW), weight gain rate (WGR) and specific growth rate (SGR) of loach were significantly increased by adding chlorogenic acid to the diet (P < 0.05); The activities of protease, lipase and amylase in liver and intestine increased significantly (P < 0.05), total antioxidant capacity (T-AOC), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) and glutathione peroxidase (GSH-Px) increased significantly, and malondialdehyde (MDA) production decreased. The activities of aspartic acid transaminase (AST) and alanine transaminase (ALT) in liver increased with the increase of chlorogenic acid concentration, reaching the maximum at 400 mg/kg and 600 mg/kg respectively. With the increase of acid concentration, serum AST and ALT activities decreased significantly (P < 0.05), and serum lactate dehydrogenase (LDH) gradually decreased with the increase of chlorogenic acid concentration, reaching the lowest value at 400 mg/kg concentration; The content of complement 3 (C3) and complement 4 (C4) in serum increased first and then decreased, reaching the peak when the concentration of chlorogenic acid was 400 mg/kg and 600 mg/kg, respectively; the level of immunoglobulin M (IgM) in serum significantly increased (P < 0.05), reaching its maximum at a concentration of 600 mg/kg; serum lysozyme (LYS) content first increased and then decreased, reaching the maximum when the concentration was 400 mg/kg. (Conclusion) Adding 400,600 mg/kg chlorogenic acid to the diet can improve the antioxidant capacity of loach, significantly improve the growth performance and digestive enzyme activity of loach (P < 0.05), enhance the immune function of loach and the digestion and absorption of nutrients, and further protect the liver tissue of loach.

  • [1]
    林春松, 黄青云, 张雪芹, 等. 苦丁茶中绿原酸及其异构体的提取变化分析 [J]. 亚热带植物科学, 2021, 50(3): 163-169.

    Lin Ch S, Huang Q Y, Zhang X Q, et al, Variations of chlorogenic acid isomers in the solvent extraction from kudingcha (Ilex kaushue)[J]. Subtropical Plant Science, 2021, 50(3): 163-169. (in Chinese).
    [2]
    刘世强. 绿原酸对断奶应激大鼠免疫功能和肠道屏障功能的影响 [D]. 南昌大学, 2013.

    Liu Sh Q. Effects of chlorogenic acid on immune function and intestinal barrier function of weaning rats [D]. Nanchang University, 2013. (in Chinese).
    [3]
    肇楠, 赵润香, 冯改静, 等. 绿原酸专利信息分析研究 [J]. 中国科技信息, 2021, (16): 21-25.

    Zhao N, Zhao R X , Feng G J, et al, Analysis of patent information of chlorogenic acid[J]. China science and technology information, 2021 (16): 21-25. (in Chinese).
    [4]
    Zha P P, Wei L Y , Liu W H, et al. Effects of dietary supplementation with chlorogenic acid on growth performance, antioxidant capacity, and hepatic inflammation in broiler chickens subjected to diquat-induced oxidative stress[J]. Poultry Science, 2023, 102(3): 102479.
    [5]
    Sun W T , Li X Q , Xu H B, et al. Effects of dietary chlorogenic acid on growth, flesh quality and serum biochemical indices of grass carp (Ctenopharyngodon idella)[J]. Aquaculture Nutrition, 2017, 23(6): 1254-1263.
    [6]
    Xu G L , Wei X, Yu H H, et al. Evaluation of chlorogenic acid supplementation in Koi (Cyprinus carpio) diet: growth performance, body color, antioxidant activity, serum biochemical parameters, and immune response[J]. Aquaculture Nutrition, 2022, 2717003.
    [7]
    Farah A, Monteiro M, Donangelo C M, et al. Chlorogenic acids from green coffee extract are highly bioavailable in humans[J]. The Journal of Nutrition, 2009, 138(12): 2309-2315.
    [8]
    Li S Y, Bian H T, Liu Z, et al. Chlorogenic acid protects MSCs against oxidative stress by altering FOXO family genes and activating intrinsic pathway [J]. European Journal of Pharmacology, 2012, 674 (2/ 3): 65-72.
    [9]
    Lepelley M, Cheminade G, Tremillon N, et al. Chlorogenic acid synthesis in coffee: An analysis of CGA content and real-time RT-PCR expression of HCT, HQT, C3H1, and CCoAOMT1 genes during grain development in C. canephora[J]. Plant Science, 2007, 172(5): 978-996. doi: 10.1016/j.plantsci.2007.02.004
    [10]
    朱文卿, 朱姗姗, 何秋霞, 等. 牛蒡多糖与绿原酸对斑马鱼氧化损伤的协同抗氧化作用 [J]. 中国食品学报, 2022, (4): 95-103.

    Zhu W Q, Zhu Sh Sh, He Q X, et al, Synergistic antioxidant effect of burdock polysaccharide and chlorogenic acid on oxidative damage in zebrafish[J]. Journal of China Foods Limited, 2022, (4): 95-103. (in Chinese).
    [11]
    王芸, 李正, 李健, 等. 绿原酸对凡纳滨对虾抗氧化系统及抗低盐度胁迫的影响 [J]. 生态学报, 2013, (18): 5704-5713.

    Wang Y, Li Zh, Li J, et al, Effects of dietary chlorogenic acid supplementation on antioxidant system anti-low salinity of Litopenaeus vannamei[J]. Journal of Ecology, 2013, (18): 5704-5713. (in Chinese).
    [12]
    温安祥, 舒辉, 肖洋. 绿原酸对中华鳖生产性能及抗氧化能力的影响 [J]. 动物营养学报, 2010, (3): 729-733.

    Wen A X, Shu H, Xiao Y, Effects of chlorogenic acid on performance and antioxidant capacity of Trionyx sinensis [J]. Journal of Animal Nutrition, 2010, (3): 729-733. (in Chinese).
    [13]
    张纯, 温安祥. 绿原酸对建鲤生长、非特异性免疫功能和抗氧化能力的影响[J]. 四川农业大学学报, 2012, 30(1): 92-97. doi: 10.3969/j.issn.1000-2650.2012.01.018

    Zhang C, Wen A X. Different of chlorogenic acid doses on growth performance, non-specific immunity and antioxidant functions of Cyprinus carpio var. Jian[J]. Journal of Sichuan Agricultural University, 2012, 30(1): 92-97 (in Chinese). doi: 10.3969/j.issn.1000-2650.2012.01.018
    [14]
    伏桂华, 石英, 王守志. 绿原酸对黄河鲤鱼生长性能、非特异性免疫功能和肌肉品质的影响 [J]. 黑龙江畜牧兽医, 2018, (20): 179-182.

    Fu G H, Shi Y, Wang SH ZH, Effects of chlorogenic acid on growth performance, non-specific immune function and muscle quality of yellow river carp [J]. Heilongjiang animal science and veterinary medicine, 2018 (20): 179-182. (in Chinese).
    [15]
    李乃顺, 冷向军, 李小勤, 等. 绿原酸对草鱼鱼种生长、非特异性免疫和肉质的影响 [J]. 水生生物学报, 2014, 38(4): 619-626.

    Li N Sh, Leng X J, Li X Q, et al, The effects of chlorogenic acid on growth, non-specific immune index and the meat quality of juvenile grass carp (Ctenopharyngodon idellus) [J]. Acta Hydrobiologica Sinica, 2014, 38(4): 619-626. (in Chinese).
    [16]
    张自慧. 霉菌毒素吸附剂对泥鳅生长性能的影响[J]. 江西水产科技, 2022, 183(3): 26-27+37. doi: 10.3969/j.issn.1006-3188.2022.03.012

    Zhang Z H. Effects of fungal toxin adsorbents on the growth performance of loach[J]. Jiangxi Aquatic Technology, 2022, 183(3): 26-27+37 (in Chinese). doi: 10.3969/j.issn.1006-3188.2022.03.012
    [17]
    夏宝东, 常彦民, 戴洪全, 等. 泥鳅稻田养殖的新方法[J]. 黑龙江水产, 2015(5): 31-34.

    Xia B D, Chang Y M, Dai H Q. et al, A new method for raising loach in rice fields[J]. Heilongjiang Fisheries, 2015(5): 31-34 (in Chinese).
    [18]
    肖瑞, 翁子依, 段义君, 等. 泥鳅表皮中活性成分提取工艺初步研究 [J]. 湖北工业大学学报, 2022, 37(4): 66-70.

    Xiao R, Weng Z Y, Duan Y J, et al, Preliminary study on the extraction technology of active compones from loach epidermis[J]. Journal of Hubei University of Technology, 2022, 37(4): 66-70. (in Chinese).
    [19]
    周本翔. 泥鳅养殖技术研究进展[J]. 信阳农业高等专科学校学报, 2012, 20(2): 113-115.

    Zhou B X. Research progress of loach aquaculture breeding technology[J]. Journal of Xinyang Agricultural College, 2012, 20(2): 113-115 (in Chinese).
    [20]
    凌先, 泥鳅的食用价值与药用价值 [J]. 技术与市场, 2009, 16(5): 116.

    Ling X. The edible and medicinal value of loach [J]. Technology and market, 2009, 16(5): 116. (in Chinese).
    [21]
    Zhou X Y, Yu Y Y, Li Y H, et al. Comparative analysis of mitochondrial genomes in distinct nuclear ploidy loach Misgurnus anguillicaudatus and its implications for polyploidy evolution[J]. PLOS One, 2014, 9(3): 92033. doi: 10.1371/journal.pone.0092033
    [22]
    Hamed G, Shiva N, Hossein S H, et al. Effect of different levels of chlorogenic acid on growth performance, immunological responses, antioxidant defense, and disease resistance of rainbow trout (Oncorhynchus mykiss) juveniles [J]. Aquaculture nutrition, 2023, 3679002.
    [23]
    孔祎頔, 李民, 吴雪芹, 等. 乳酸乳球菌L19对乌鳢生长、免疫功能及抗氧化能力的影响 [J]. 饲料工业, 2021, 42(24): 25-30.

    Kong Y D, Li M, Wu X Q, et al, Effects of Lactococcus lactis L19 on growth, immunity and antioxidant capacity of Channa argus[J]. Feed industry, 2021, 42(24): 25-30. (in Chinese).
    [24]
    孔祎頔, 徐晴, 李民, 等. 粪肠球菌W24对乌鳢生长性能、抗氧化能力及免疫功能的影响[J]. 饲料工业, 2021, 42(14): 49-54.

    Kong Y D, Xu Q, Li M, et al. Effects of Enterococcus faecalis W24 on growth performance, antioxidant capacity and immune function of Channa argus[J]. Feed industry, 2021, 42(14): 49-54 (in Chinese).
    [25]
    Zhang J Z, Wang Z Q, Shi Y, Xia L Q, et al, Protective effects of chlorogenic acid on growth, intestinal inflammation, hepatic antioxidant capacity, muscle development and skin color in channel catfish Ictalurus punctatus fed an oxidized fish oil diet [J]. Fish & Shellfish Immunology, 2023, 134, 1050-4648.
    [26]
    Zhao W, Yao R, Wei H L, et al Astaxanthin, bile acid and chlorogenic acid attenuated the negative effects of high-fat diet on the growth, lipid deposition, and liver health of Oncorhynchus mykiss[J]. Aquaculture, 2023, 567, 0044-8486.
    [27]
    李晋南, 张圆圆, 范泽等. 饲料精氨酸水平对松浦镜鲤幼鱼生长、抗氧化能力和肠道消化酶活性及其组织学结构的影响[J]. 水产学杂志, 2021, 34(5): 32-39.

    Li J N, Zhang Y Y, Fan Y, et al. Effects of dietary arginine level on growth, antioxidant capacity, and intestinal digestive enzyme activity and histological structure in juvenile songpu mirror carp (Cyprinus carpio Songpu)[J]. Journal of Fisheries, 2021, 34(5): 32-39 (in Chinese).
    [28]
    马德英, 蔡鹏雨, 翟少伟等. 饲料组胺对美洲鳗鲡幼鱼生长、肠道消化酶活性及抗氧化指标的影响[J]. 饲料研究, 2020, 43(2): 42-45.

    Ma D Y, Cai P Y, Zhai S W, et al. Effect of dietary histamine on growth performance, digestive enzyme activities and antioxidant indices in intestine of juvenile American eels (Anguilla rostrata)[J]. Feed research, 2020, 43(2): 42-45 (in Chinese).
    [29]
    Daniel Assan, Felix Kofi Agbeko Kuebutornye, Vivian Hlordzi, et al, Effects of probiotics on digestive enzymes of fish (finfish and shellfish); status and prospects: a mini review[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, Volume 257, 2022, 1096-4959.
    [30]
    Farshad Ramezani, Seyed Pezhman Hosseini Shekarabi, Mehdi Shamsaei Mehrgan, et al, Supplementation of Siberian sturgeon (Acipenser baerii) diet with barberry (Berberis vulgaris) fruit extract: Growth performance, hemato-biochemical parameters, digestive enzyme activity, and growth-related gene expression [J]. Aquaculture, 2021, 540: 0044-8486.
    [31]
    祝璟琳, 季桓涛, 肖炜等. 鱼腥草对无乳链球菌引起吉富罗非鱼肝脏损伤的修复作用[J]. 水产学报, 2020, 44(7): 1187-1197.

    Zhu J L, Ji H T, Xiao Y, et al. Protective effects from Houttuynia cordata against Streptococcus agalactiae induced liver injury of GIFT Oreochromis niloticus strain. [J] Journal of Fisheries, 2020, 44(7): 1187-1197(in Chinese).
    [32]
    王丽宏, 叶元土, 张宝彤, 等. 几种养殖鱼类血清转氨酶活性参考值的探讨[J]. 饲料工业, 2011, 32(24): 18-20.

    Wang L H, Ye Y T, Zhang B T, et al. Approach on the reference values of serum transaminase in several kinds of cultured fishes[J]. Feed industry, 2011, 32(24): 18-20 (in Chinese).
    [33]
    Ozardalı İ, Bitiren M, Karakılçık A Z, et al. Effects of selenium on histopathological and enzymatic changes in experimental liver injury of rats[J]. Experimental and Toxicologic Pathology, 2004, 56: 59-64. doi: 10.1016/j.etp.2004.05.001
    [34]
    钱云霞, 陈惠群, 孙江飞. 饥饿对养殖鲈鱼血液生理生化指标的影响[J]. 中国水产科学, 2002, 8(2): 133-137.

    Qian Y X, Chen H Q, Sun J F. Effects of starvation on hematological and blood biochemical indices in cultured Lateolabrax japonicus[J]. Journal of Chinese Fishery Science, 2002, 8(2): 133-137 (in Chinese).
    [35]
    王香丽, 麦康森, 徐玮, 等. 蛋氨酸对瓦氏黄颡鱼幼鱼肝脏及血浆中谷草转氨酶和谷丙转氨酶活力的影响[J]. 中国海洋大学学报(自然科学版), 2015, 45(9): 49-53.

    Wang X L, Mai K S, Xu W, et al. Influence of dietary methionine on the activity of liver and plasma glutamic-pyruvic and glutamic oxalacetic transaminases of juvenile darkbarbel catfish (Pelteobagrus vachelli)[J]. Journal of Ocean University of China (Natural Sciences), 2015, 45(9): 49-53 (in Chinese).
    [36]
    康绍乐, 杜启艳, 王萍, 等. 饥饿应激对泥鳅3种组织糖原, ACP和ALP的影响[J]. 河南师范大学学报(自然科学版), 2008, 36(6): 158-162.

    Kang S L, Du Q Y, Wang P, et al. Effects of starvation stress on glycogen, ACP and ALP in three tissues of Misgurnus anguillicadatus[J]. Journal of Henan Normal University (Natural Science Edition), 2008, 36(6): 158-162 (in Chinese).
    [37]
    曹新芳, 黄卉卉, 任秋楠, 等. 泥鳅消化道过氧化物酶、三磷酸腺苷酶、琥珀酸脱氢酶、酸性磷酸酶、碱性磷酸酶及非特异性酯酶的分布与组织定位[J]. 中国组织化学与细胞化学杂志, 2018, 27(5): 453-458.

    Cao X F, Huang H H, Ren Q N, et al. Distribution and histological localization of peroxidase, adenosine triphosphatase, succinate dehydrogenase, acid phosphatase, alkaline phosphatase and non-specific esterase in the digestive tract of Misgurnus anguillicaudatus[J]. Chinese Journal of Histochemistry and Cytochemistry, 2018, 27(5): 453-458 (in Chinese).
    [38]
    毛瑞鑫, 刘福军, 张晓峰, 等. 鲤鱼乳酸脱氢酶活性的QTL检测[J]. 遗传, 2009, 31(4): 407-411.

    Mao R X, Liu F J, Zhang X F, et al. Studies on quantitative trait loci related to activity of lactate dehydrogenase in common carp(Cyprinus carpio)[J]. Inheritance, 2009, 31(4): 407-411 (in Chinese).
    [39]
    陈思, 陈芳, 羽中. 关于乳酸脱氢酶的学习和总结[J]. 卫生职业教育, 2008(2): 71-72.

    Chen S, Chen F, Yu Z. Study and summary of lactate dehydrogenase[J]. Health vocational education, 2008(2): 71-72 (in Chinese).
    [40]
    易继凌. 绿原酸对体外培养成骨细胞活性影响的初步研究 [D]. 中南民族大学, 2013.

    Yi J L. Preliminary study of chlorogenic acid on activity of cultured osteoblasts in vitro [D]. South-Central University for Nationalities, 2013 (in Chinese).
    [41]
    史秀玲, 高银辉. 绿原酸对小鼠急性肝损伤的保护作用[J]. 中国实验方剂学杂志, 2011, 17(19): 199-202.

    Shi X L, Gao Y H. Protective effect of chlorogenic acid on liver injury in mice[J]. Journal of Chinese Experimental Formulae, 2011, 17(19): 199-202 (in Chinese).
    [42]
    杨玉辉, 周艳, 阮征, 等. 绿原酸保护由脂多糖诱导引起的大鼠慢性肝脏损伤[J]. 现代食品科技, 2014, 30(7): 23-26+241.

    Yang Y H, Zhou Y, Ruan Z, et al. Protective effects of chlorogenic acid on lipopolysaccharide-induced chronic liver injury in rats[J]. Modern Food Science and Technology, 2014, 30(7): 23-26+241 (in Chinese).
    [43]
    王志平, 张士璀, 王光锋. 鱼类补体系统成分及补体特异性和功能的研究进展[J]. 水生生物学报, 2008, 32(5): 760-769.

    Wang Z P, Zhang S C, Wang G F. Advances on the complement components, characteristic and function of complement system in fish[J]. Journal of Hydrobiology, 2008, 32(5): 760-769 (in Chinese).
    [44]
    叶剑敏, 王玉红, 丁明媚, 等. 硬骨鱼IgM结构和功能及其体液免疫应答[J]. 华南师范大学学报(自然科学版), 2015, 47(5): 1-8.

    Ye J M, Wang Y H, Ding M M, et al. Teleost IgM structure, function and humoral immune response[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(5): 1-8 (in Chinese).
    [45]
    白刃, 杨百学, 常洋, 等. 溶菌酶及其应用[J]. 畜禽业, 2009(8): 46-47.

    Bai R, Yang B X, Chang Y, et al. Lysozyme and its application[J]. Livestock and Poultry Industry, 2009(8): 46-47 (in Chinese).
    [46]
    肖洋. 绿原酸对中华鳖生长性能和非特异性免疫的影响[D]. 四川农业大学, 2010.

    Xiao Y. Effects of chlorogenic acid on growth and non-specific immunity on chinese soft-shelled chinese turtle[D]. Sichuan Agricultural University, 2010 (in Chinese).
    [47]
    王多伽, 畅丽芳, 迟玉杨, 等. 日粮中添加不同水平绿原酸对獭兔血清免疫指标的影响[J]. 饲料研究, 2013(3): 33-36. doi: 10.3969/j.issn.1002-2813.2013.03.013

    Wang D J, Chang L F, Chi Y Y, et al. Effects of dietary chlorogenic acid supplementation on serum immune indexes of rex rabbits[J]. Feed Study, 2013(3): 33-36 (in Chinese). doi: 10.3969/j.issn.1002-2813.2013.03.013
    [48]
    王建辉, 刘永乐, 李赤翎, 等. 杜仲绿原酸对高脂模型小鼠降血脂作用研究[J]. 食品工业科技, 2012, 33(15): 360-362+375.

    Wang J H, Liu Y L, Li C L, et al. Effect of chlorogenic acid extracted from Eucommia Ulmoides Olivon hyperlipemia of mice induced by high fat diet[J]. Food industry Science and Technology, 2012, 33(15): 360-362+375 (in Chinese).
    [49]
    彭冰洁, 肖丽娟, 伍翔, 等. 绿原酸对高脂饲喂大鼠骨骼肌糖代谢的影响[J]. 中草药, 2015, 46(17): 2580-2585. doi: 10.7501/j.issn.0253-2670.2015.17.013

    Peng B J, Xiao L J, Wu X, et al. Effect of chlorogenic acid on carbohydrate metabolism in skeletal muscle of rats fed on high-fat diet[J]. Chinese Herbal Medicine, 2015, 46(17): 2580-2585 (in Chinese). doi: 10.7501/j.issn.0253-2670.2015.17.013
    [50]
    Mathieu Castex, Pierrette Lemaire, Nelly Wabete, et al. Effect of probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress of Litopenaeus stylirostris under Vibrio nigripulchritudo challenge[J]. Fish & Shellfish Immunology, 2009, 28(4): 622-631.
    [51]
    Sönmez Adem Yavuz, Bilen Soner, Alak Gonca, et al. Growth performance and antioxidant enzyme activities in rainbow trout (Oncorhynchus mykiss) juveniles fed diets supplemented with sage, mint and thyme oils[J]. Fish Physiology and Biochemistry, 2015, 41(1): 165-175.
    [52]
    Zhang Y, Wang Y Q, Liu X Y, et al. Metabolomics analysis for skin ulceration syndrome of Apostichopus japonicus based on UPLC/Q-TOF MS[J]. Journal of Oceanology and Limnology, 2021, 39(4): 1559-1569. doi: 10.1007/s00343-020-0205-4
    [53]
    Pham Hung Duc, Siddik Muhammad A B, Fotedar Ravi, et al. Total bioavailable organic selenium in fishmeal-based diet influences growth and physiology of juvenile cobia Rachycentron canadum (Linnaeus, 1766) [J]. Biological Trace Element Research, 2019, 190(2): 541-549.
    [54]
    张雪雷. 不同水平绿原酸对中华鳖抗氧化功能的影响[J]. 渔业致富指南, 2021(13): 68-70.

    Zhang X L. Effects of different levels of chlorogenic acid on antioxidant function of Trionyx sinensis[J]. How to Get Rich from Fishing, 2021(13): 68-70 (in Chinese).
    [55]
    刘静慧, 李冲, 徐美利, 等. 不同水平绿原酸对肉兔生长性能、抗氧化性能和肝脏微观结构的影响[J]. 畜牧与兽医, 2021, 53(9): 21-26.

    Liu J H, Li C, Xu M L, et al. Effects of different levels of chlorogenic acid on growth, antioxidant properties and liver microstructure of meat rabbits[J]. Animal Husbandry and Veterinary Medicine, 2021, 53(9): 21-26 (in Chinese).
    [56]
    张宝龙, 曲木, 赵子续, 等. 不同植物源添加剂水平的饲料对红白锦鲤抗氧化能力及LPS活性的影响[J]. 农业技术与装备, 2019(5): 20-25.

    Zhang B L, Qu M, Zhao Z X, et al. Effects of different botanical additives level on antioxidant and LPS activity of Cyprinus Carpio Haematopterus[J]. Agricultural Technology and Equipment, Agricultural Technology and Equipment, 2019(5): 20-25 (in Chinese).

Catalog

    Article views (89) PDF downloads (15) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return