Processing math: 100%
  • ISSN 1000-0615
  • CN 31-1283/S
LI Jinghao, CHENG Yongxu, WANG Haifeng, HUANG Jin, SHEN Haoran, CHEN Huangen, LI Jiayao. A preliminary study on the feeding effect of the red swamp crayfish (Procambarus clakii) using biofloc technology[J]. Journal of fisheries of china, 2019, 43(4): 968-977. DOI: 10.11964/jfc.20180311201
Citation: LI Jinghao, CHENG Yongxu, WANG Haifeng, HUANG Jin, SHEN Haoran, CHEN Huangen, LI Jiayao. A preliminary study on the feeding effect of the red swamp crayfish (Procambarus clakii) using biofloc technology[J]. Journal of fisheries of china, 2019, 43(4): 968-977. DOI: 10.11964/jfc.20180311201

A preliminary study on the feeding effect of the red swamp crayfish (Procambarus clakii) using biofloc technology

Funds: Science and Technology Support Projects of agriculture from Shanghai Municipal Science and Technology Commission (15391912100); Fishery Science and Technology Project of Jiangsu Province (D2017-1-1); Shanghai Universities Top Disciplines Project of Fisheries from Shanghai Municipal Education Committee and the Technology Commission (2015-62-0908)
More Information
  • Corresponding author:

    LI Jiayao. E-mail: jy-li@shou.edu.cn

  • Received Date: March 06, 2018
  • Revised Date: April 24, 2018
  • Available Online: February 13, 2019
  • Published Date: March 31, 2019
  • To investigate the possibility of feeding the red swamp crayfish (Procambarus clarkii) with biofloc technology, a 30-day short-term experiment was conducted to farm juveniles (9.70±0.32) g using biofloc technology and feeding normal diet. This experiment compared the hydrochemical indexes of two experimental groups during experimental period and compared the growth performance, muscle and hepatopancreas nutrient composition, the digestive enzyme activities in stomach, intestine, hepatopancreas tissues, the antioxidant capacity in hepatopancreas and muscle tissues of two groups’ juveniles at the end of the experiment. The results showed that the concentration of total nitrogen (TN), nitrite nitrogen (NO2-N), nitrate nitrogen (NO3-N) of the biofloc group were all kept at a low level during experimental period. The final weight of the juvenile shrimps, the weight gain rate (WG), the specific growth rate (SGR) and survive rate (SR) showed no significant difference in the two experimental groups under this experiment condition. The content of crude protein of the biofloc was 36.8% which could meet the protein requirement of P. clarkii. However, the crude lipid content of biofloc was significantly lower and affected the crude lipid content of muscle from biofloc group juveniles. The α-amylase (α-AL), lipase (LPS) and cellulase (CL) activities in hepatopancreas of the biofloc group juveniles were significantly higher than that of the diet group juveniles, respectively, while α-AL activity in stomach and intestine was higher in the diet group. No significant difference was found in the pepsin activity between the two experimental groups. Comparing the antioxidant capacity of crayfish juveniles from the two experimental groups, the activity of superoxide dismutase (SOD) in hepatopancreas of juveniles from the biofloc group was significantly higher, and the content of malondialdehyde (MDA) was much lower than that from the diet group. No differences were found in the activities of total antioxidant capacity (T-AOC), catalase (CAT), glutathione reductase (GR) and lysozyme (LZM) in hepatopancreas of juveniles from two experimental groups. In conclusion, the biofloc technology had a positive effect on farming of the red swamp crayfish. And this technology could achieve the same or even better affect than the normal diet feeding.
  • [1]
    田娟, 许巧情, 田罗, 等. 洞庭湖克氏原螯虾肌肉成分分析及品质特性分析[J]. 水生生物学报, 2017, 41(4): 870-877.

    Tian J, Xu X Q, Tian L, et al. The muscle composition analysis and flesh quality of Procambarus clarkia in the Dongting lake[J]. Acta Hydrobiologica Sinica, 2017, 41(4): 870-877(in Chinese).
    [2]
    农业部渔业渔政管理局. 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2017: 24-25.

    Bureau of Fisheries, Ministry of Agriculture. China Fishery Statistical Yearbook[M]. Beijing: China Agriculture Press, 2016: 24-25 (in Chinese).
    [3]
    Crab R, Avnimelech Y, Defoirdt T, et al. Nitrogen removal techniques in aquaculture for a sustainable production[J]. Aquaculture, 2007, 270(1-4): 1-14.
    [4]
    刘文斌. 克氏螯虾的营养需求研究及饲料应用展望[J]. 经济动物学报, 2013, 17(1): 1-4, 11.

    Liu W B. Nutritional requirement and compound feed application for red swamp crayfish (Procambarus clarkii)[J]. Journal of Economic Animal, 2013, 17(1): 1-4, 11(in Chinese).
    [5]
    Avnimelech Y. Carbon/nitrogen ratio as a control element in aquaculture systems[J]. Aquaculture, 1999, 176(3-4): 227-235.
    [6]
    Azim M E, Little D C. The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 2008, 283(1-4): 29-35.
    [7]
    Wang C, Pan L Q, Zhang K Q, et al. Effects of different carbon sources addition on nutrition composition and extracellular enzymes activity of bioflocs, and digestive enzymes activity and growth performance of Litopenaeus vannamei in zero-exchange culture tanks[J]. Aquaculture Research, 2016, 47(10): 3307-3318.
    [8]
    Asaduzzaman M, Wahab M A, Verdegem M C J, et al. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds[J]. Aquaculture, 2008, 280(1-4): 117-123.
    [9]
    Hari B, Kurup B M, Varghese J T, et al. Effects of carbohydrate addition on production in extensive shrimp culture systems[J]. Aquaculture, 2004, 241(1-4): 179-194.
    [10]
    邓应能. 不同养殖系统生物絮团调控模式研究[D]. 上海: 上海海洋大学, 2011.

    Deng Y N. Study on the controlling model of bio-floc in different culture systems[D]. Shanghai: Shanghai Ocean University, 2011 (in Chinese).
    [11]
    AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists[M]. 16th ed. Arlington: Association of Official Analytical Chemists, 1995.
    [12]
    Folch J, Lees M, Sloane-Stanley G H. A simple method for the isolation and purification of total lipides from animal tissues[J]. Journal of Biological Chemistry, 1957, 226(1): 497-509.
    [13]
    Schneider O, Sereti V, Eding E H, et al. Analysis of nutrient flows in integrated intensive aquaculture systems[J]. Aquacultural Engineering, 2005, 32(3-4): 379-401.
    [14]
    Browdy C L, Ray A J, Leffler J W, et al. Biofloc-based Aquaculture Systems[M]//Tidwell J H. Aquaculture Production Systems. Ames, Iowa: Wiley-Blackwell, 2012: 278-307.
    [15]
    Wang G J, Yu E M, Xie J, et al. Effect of C/N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus[J]. Aquaculture, 2015, 443: 98-104.
    [16]
    于宁, 朱站英, 冯文和, 等. 克氏原螯虾饲料最适能量蛋白质比[J]. 动物营养学报, 2014, 26(4): 1111-1119.

    Yu N, Zhu Z Y, Feng H W, et al. Optimum energy-protein ratios in diets of Procambrus clarkii[J]. Chinese Journal of Animal Nutrition, 2014, 26(4): 1111-1119(in Chinese).
    [17]
    Emerenciano M, Ballester E L C, Cavalli R O, et al. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817)[J]. Aquaculture Research, 2012, 43(3): 447-457.
    [18]
    Yao C, Tan H X, Luo G Z, et al. Effects of temperature on inorganic nitrogen dynamics in sequencing batch reactors using biofloc technology to treat aquaculture sludge[J]. North American Journal of Aquaculture, 2013, 75(4): 463-467.
    [19]
    徐维娜, 刘文斌, 沈美芳, 等. 饲料中不同蛋白质和脂肪水平对克氏螯虾(Procambarus clarkii)生长性能、体组成和消化酶活性的影响[J]. 海洋与湖沼, 2011, 42(4): 521-529.

    Xu W N, Liu W B, Shen M F, et al. Effect of different dietary protein and lipid level on growth performance, body composition and digestive enzymes activities of red swamp crayfish Procambarus clarkii[J]. Oceanologia et Limnologia Sinica, 2011, 42(4): 521-529(in Chinese).
    [20]
    Ju Z Y, Forster I, Conquest L, et al. Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc or floc fractions to a formulated diet[J]. Aquaculture Nutrition, 2008, 14(6): 533-543.
    [21]
    De Souza D M, Borges V D, Furtado P, et al. Antioxidant enzyme activities and immunological system analysis of Litopenaeus vannamei reared in biofloc technology (BFT) at different water temperatures[J]. Aquaculture, 2016, 451: 436-443.
    [22]
    Crab R, Defoirdt T, Bossier P, et al. Biofloc technology in aquaculture: beneficial effects and future challenges[J]. Aquaculture, 2012, 356: 351-356.
    [23]
    Moss S M, Divakaran S, Kim B G. Stimulating effects of pond water on digestive enzyme activity in the Pacific white shrimp, Litopenaeus vannamei (Boone)[J]. Aquaculture Research, 2001, 32(2): 125-131.
    [24]
    李强. 克氏原螯虾对饲料中蛋白质与磷适宜需求量的研究[D]. 武汉: 华中农业大学, 2012.

    Li Q. Dietary protein and phosphorus requirement of red swamp crayfish, Procambarus clarkii[D]. Wuhan: Huazhong Agricultural University, 2012 (in Chinese).
    [25]
    Zhang N, Luo G Z, Tan H X, et al. Growth, digestive enzyme activity and welfare of tilapia (Oreochromis niloticus) reared in a biofloc-based system with poly-β-hydroxybutyric as a carbon source[J]. Aquaculture, 2016, 464: 710-717.
    [26]
    Shao J C, Liu M, Wang B J, et al. Evaluation of biofloc meal as an ingredient in diets for white shrimp Litopenaeus vannamei under practical conditions: Effect on growth performance, digestive enzymes and TOR signaling pathway[J]. Aquaculture, 2017, 479: 516-521.
    [27]
    Cardona E, Lorgeoux B, Geffroy C, et al. Relative contribution of natural productivity and compound feed to tissue growth in blue shrimp (Litopenaeus stylirostris) reared in biofloc: assessment by C and N stable isotope ratios and effect on key digestive enzymes[J]. Aquaculture, 2015, 448: 288-297.
    [28]
    Wasielesky W J, Atwood H, Stokes A, et al. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei[J]. Aquaculture, 2006, 258(1-4): 396-403.
    [29]
    Xu W J, Pan L Q. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed[J]. Aquaculture, 2012, 356: 147-152.
    [30]
    Jones D A, Kumlu M, Vay L L, et al. The digestive physiology of herbivorous, omnivorous and carnivorous crustacean larvae: a review[J]. Aquaculture, 1997, 155(1-4): 285-295.
    [31]
    杨其彬, 李运东, 江世贵, 等. 斑节对虾α-淀粉酶基因的克隆及其表达分析[J]. 水生生物学报, 2017, 41(6): 1186-1192.

    Yang Q B, Li Y D, Jiang S G, et al. Cloning and expression analysis of alpha amylase cdna of Penaeus monodon[J]. Acta Hydrobiologica Sinica, 2017, 41(6): 1186-1192(in Chinese).
    [32]
    Krummenauer D, Poersch L, Romano L A, et al. The effect of probiotics in a Litopenaeus vannamei biofloc culture system infected with Vibrio parahaemolyticus[J]. Journal of Applied Aquaculture, 2014, 26(4): 370-379.
    [33]
    Ekasari J, Suprayudi M A, Wiyoto W, et al. Biofloc technology application in African catfish fingerling production: The effects on the reproductive performance of broodstock and the quality of eggs and larvae[J]. Aquaculture, 2016, 464: 349-356.
    [34]
    Zhao D H, Pan L Q, Huang F, et al. Effects of different carbon sources on bioactive compound production of biofloc, immune response, antioxidant level, and growth performance of Litopenaeus vannamei in zero-water exchange culture tanks[J]. Journal of the World Aquaculture Society, 2016, 47(4): 566-576.
    [35]
    Anand P S S, Kumar S, Kohli M P S, et al. Dietary biofloc supplementation in black tiger shrimp, Penaeus monodon: effects on immunity, antioxidant and metabolic enzyme activities[J]. Aquaculture Research, 2017, 48(8): 4512-4523.
    [36]
    Liu G, Zhu S M, Liu D Z, et al. Effects of stocking density of the white shrimp Litopenaeus vannamei (Boone) on immunities, antioxidant status, and resistance against Vibrio harveyi in a biofloc system[J]. Fish & Shellfish Immunology, 2017, 67: 19-26.
    [37]
    孔纯, 华雪铭, 杨璐, 等. 暗纹东方鲀饲料中豆粕替代鱼粉的营养生理效应及其与大豆抗原蛋白的相关性[J]. 水产学报, 2017, 41(5): 734-745.

    Kong C, Hua X M, Yang L, et al. Nutritional physiological effects of soybean meal substituting for fish meal in the feed of obscure puffer (Takifugu fasciatus) and its relationship with soybean antigenic proteins[J]. Journal of Fisheries of China, 2017, 41(5): 734-745(in Chinese).
    [38]
    Xu W J, Pan L Q. Evaluation of dietary protein level on selected parameters of immune and antioxidant systems, and growth performance of juvenile Litopenaeus vannamei reared in zero-water exchange biofloc-based culture tanks[J]. Aquaculture, 2014, 426: 181-188.
    [39]
    Ninawe A S, Selvin J. Probiotics in shrimp aquaculture: avenues and challenges[J]. Critical Reviews in Microbiology, 2009, 35(1): 43-66.
    [40]
    Cardona E, Gueguen Y, Magré K, et al. Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system[J]. BMC Microbiology, 2016, 16: 157.
    [41]
    Hu X J, Cao Y C, Wen G L, et al. Effect of combined use of Bacillus and molasses on microbial communities in shrimp cultural enclosure systems[J]. Aquaculture Research, 2017, 48(6): 2691-2705.
  • Related Articles

    [1]ZHOU Kangqi, WEI Zina, LI Zhe, LIN Yong, HUANG Yin, DU Xuesong, QIN Junqi, CHEN Zhong, OU Hongxia, XU Junlong, XIANG Guide, PAN Xianhui. Effects of different times of low temperature anhydrous preservation on survival, nutritional composition, enzyme activities and antioxidant indexes of Cipangopaludina chinensis[J]. Journal of fisheries of china, 2024, 48(6): 069816. DOI: 10.11964/jfc.20211213262
    [2]TONG Yanmei, CHEN Xiuli, HU Tingjun, LIU Qingyun, LI Qiangyong, FENG Pengfei, YANG Chunling, PENG Min, ZHU Weilin, PAN Chuanyan, ZENG Digang, ZHAO Yongzhen. Response surface methodology-based optimization of extraction process of polysaccharides from Caulerpa lentillifera and their antioxidant activity[J]. Journal of fisheries of china, 2024, 48(1): 019815. DOI: 10.11964/jfc.20211013103
    [3]LIU Xiaorui, MA Xibo, ZHANG Nan, LI Min, LI Ke, JIAO Siqi, WANG Guiqin, KONG Yidi. Effects of chlorogenic acid in feed on the growth performance, digestive enzyme activity, immune function, and antioxidant capacity of loach (Misgurnus anguillicaudatus)[J]. Journal of fisheries of china, 2023, 47(10): 109609. DOI: 10.11964/jfc.20230614059
    [4]LI Jing, LI Xiaoli, WANG Ling, LU Kangle, SONG Kai, ZHANG Chunxiao. Effects of hydroxyl methionine selenium supplementation in low-fishmeal diet on growth, antioxidant ability and nitrite tolerance of Pacific white shrimp (Litopenaeus vannamei)[J]. Journal of fisheries of china, 2022, 46(10): 1848-1859. DOI: 10.11964/jfc.20210813040
    [5]ZHANG Yawen, CHENG Yongxu, LI Chenlu, WANG Yuanyuan, HOU Shouquan, LI Jinghao, XI Yewen, ZHU Chuanzhong, LI Jiayao. Effects of dietary supplementation with different aquatic weed meals on the growth performance, digestive enzyme and antioxidant enzyme activities, and coloration of Procambarus clarkii[J]. Journal of fisheries of china, 2022, 46(8): 1414-1426. DOI: 10.11964/jfc.20210212633
    [6]OUYANG Jie, ZHAO Xinyuan, MA Tiantian. Astaxanthin content, structure and antioxidant activity in the processing of Antarctic krill (Euphausia superba) meal[J]. Journal of fisheries of china, 2022, 46(3): 420-429. DOI: 10.11964/JFC.20220113277
    [7]LIU Mei, LIAN Qingping, NI Meng, GUO Aihuan, YUAN Julin. Effects of inner-pond raceway aquaculture on the growth performance, antioxidant enzymes, digestive enzymes, digestive tract structure, and bacterial flora of largemouth bass (Micropterus salmoides)[J]. Journal of fisheries of china, 2021, 45(12): 2011-2028. DOI: 10.11964/jfc.20210412737
    [8]YAO Jingting, KONG Chun, HUA Xueming, SHUI Chun, SHI Yonghai. Effects of supplemental hydrolysable tannin on feeding preference, nutrition digestion and antioxidant ability of obscure puffer (Takifugu fasciatus)[J]. Journal of fisheries of china, 2019, 43(6): 1449-1462. DOI: 10.11964/jfc.20181211580
    [9]LIU Yangyang, YU Haibo, WU Wenyi, ZHONG Mingzhi, XING Junxia, ZHOU Jishu, JI Hong, XUE Min. Effects of dietary lipid levels on growth, body composition, digestive enzyme activities, serum biochemical indexes and antioxidant performance of Polyodon spathula[J]. Journal of fisheries of china, 2018, 42(12): 1940-1956. DOI: 10.11964/jfc.20180111138
    [10]ZHANG Shuwei, LU Kangle, SONG Kai, WANG Ling, ZHANG Chunxiao. Effects of crystalline methionine and calcium 2-hydroxy-4-(methylthio) butyrate on growth, antioxidant ability and intestinal protease activities of Japanese seabass (Lateolabrax japonicus)[J]. Journal of fisheries of china, 2017, 41(12): 1908-1918. DOI: 10.11964/jfc.20161210663
  • Cited by

    Periodical cited type(15)

    1. 封永辉,依巴代提·艾山,韩小丽. 生物絮团技术在新疆工厂化养殖对虾中的优势分析. 黑龙江水产. 2025(01): 45-47 .
    2. 曲寅,章晓栋,任岗,沈文英. 间歇性饥饿对南美白对虾生物絮团养殖系统中微生物群落结构、水质和生长的影响. 农业生物技术学报. 2024(02): 417-426 .
    3. 吴春,王宣朋,张高伟,王信海. 生物絮团对中华绒螯蟹生长性能、免疫力、营养品质及养殖水体水质的影响. 青岛农业大学学报(自然科学版). 2023(01): 46-53 .
    4. 刘明明,成永旭,李威,孙颖,刘小飞,奚业文,李嘉尧. 伊乐藻环境中克氏原螯虾适宜养殖密度的筛选. 上海海洋大学学报. 2023(04): 699-707 .
    5. 韩佳民,苏胜齐. 生物絮团技术研究进展与应用概述. 水产科学. 2022(03): 491-503 .
    6. 张美彦,杨星,张效平,赵凤,李建光,商宝娣. 生物絮团系统中不同养殖比例对松浦镜鲤营养及生理指标的影响. 西南农业学报. 2022(05): 1228-1232 .
    7. 李晨露,李京昊,成永旭,涂纹,吴乐,奚业文,朱传忠,李嘉尧. 不同饵料对克氏原螯虾仔虾养殖水质、生长、消化酶和非特异性免疫酶的影响. 上海海洋大学学报. 2022(04): 883-892 .
    8. 宋晓明. 生物发酵饲料对克氏原螯虾免疫功能的影响. 黑龙江水产. 2022(04): 14-16 .
    9. 周丰林,陶丽竹,王安琪,毛思琦,徐晓雁,李家乐,沈玉帮. 养殖青鱼组织状态评估及肠道消化酶和抗氧化酶分布特征. 上海海洋大学学报. 2021(02): 205-213 .
    10. 张羽穆,阮国良,王淑娟,方刘,王乾,张涵,叶丹. 潜江市克氏原螯虾不同养殖模式的效益对比分析. 湖北农业科学. 2021(14): 95-99 .
    11. 郭坤,方刘,孙柯,阮国良. 生物发酵饲料对池塘养殖克氏原螯虾生长性能、肌肉品质及免疫机能的影响. 饲料研究. 2020(01): 18-21 .
    12. 金毅,傅洪拓,孙盛明,乔慧,张文宜,金舒博,龚永生,蒋速飞,熊贻伟,钱珺,张禹宁. 不同碳氮比对生物絮团形成及对日本沼虾生长、抗氧化酶和消化酶的影响. 水生生物学报. 2020(06): 1239-1246 .
    13. 于哲,李良,朱瑞,吴莉芳,李民,段晶,王婧瑶. 生物絮团对水产动物生长、消化及养殖水体水质的影响. 渔业现代化. 2019(02): 15-21 .
    14. 朱林,车轩,刘兴国,刘晃,王小冬. 生物絮团技术在水产养殖中的应用. 山西农业科学. 2019(09): 1680-1682 .
    15. 于哲,吴莉芳,代忠义,刘艳辉. 不同C/N水平生物絮团对黄金鲫生长性能、消化酶活力及养殖水体水质的影响. 饲料工业. 2019(22): 40-47 .

    Other cited types(9)

Catalog

    Article views (1709) PDF downloads (38) Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return