• ISSN 1000-0615
  • CN 31-1283/S
ZHANG Jianpeng, WANG Tongyi, LUO Xuan, YOU Weiwei, KE Caihuan, CAI Mingyi. Comparative chromosome mapping of 45S rDNA in four species of abalone[J]. Journal of fisheries of china, 2019, 43(12): 2459-2467. DOI: 10.11964/jfc.20181211591
Citation: ZHANG Jianpeng, WANG Tongyi, LUO Xuan, YOU Weiwei, KE Caihuan, CAI Mingyi. Comparative chromosome mapping of 45S rDNA in four species of abalone[J]. Journal of fisheries of china, 2019, 43(12): 2459-2467. DOI: 10.11964/jfc.20181211591

Comparative chromosome mapping of 45S rDNA in four species of abalone

Funds: National Natural Science Foundation of China(U1605213)
More Information
  • Corresponding author:

    CAI Mingyi. E-mail: myicai@jmu.edu.cn

  • Received Date: December 19, 2018
  • Revised Date: March 31, 2019
  • Available Online: August 05, 2019
  • Published Date: November 30, 2019
  • Abalone is not only precious seafood in China, but also important mariculture shellfish. In recent years, the genetic breeding research of abalone has made rapid progress, but the research data of cytogenetic analysis are still lacking. Therefore, this study used the fluorescence in situ hybridization (FISH) to compare the distribution of 45S rDNA clusters in Haliotis discus hannai, H. gigantea, H. fulgens, and H. diversicolor. In H. discus hannai, 83% of the metaphase had 2 pairs of 45S rDNA sites, located at terminal of the long arm ends of chromosomes 13th and 16th, respectively. In H. gigantea, about 75% of the metaphase had 3 pairs of 45S rDNA sites, located at the terminal of the short arm of chromosome 6th, and at the terminal of the long arm of chromosomes 14th and 17th, respectively. In H. fulgens, about 85% of the metaphase cells detected three pairs of 45S rDNA sites, located at the terminal of the long arms of chromosomes 4th, 6th, and 8th. In H. diversicolor, about 65% of the metaphase had 3 pairs of 45S rDNA sites, located at the terminal of the short arms of chromosomes 3th, 4th, and 12th. In addition to the main mode, there were other low-frequency modes in all the 4 species of abalone, suggesting that these abalone may have several unstable 45S rDNA sites besides the unambiguous sites. The number and the location of 45S rDNA loci in abalone showed a high level of intraspecific variation in general. These findings may enrich the cytogenetic research data of abalone and provide basic data for the further studies of genetic breeding in abalone.
  • [1]
    Franchini P, Slabbert R, Van Der Merwe M, et al. Karyotype and genome size estimation of Haliotis midae: estimators to assist future studies on the evolutionary history of haliotidae[J]. Journal of Shellfish Research, 2010, 29(4): 945-950. doi: 10.2983/035.029.0428
    [2]
    郭战胜, 侯旭光. 鲍科染色体研究进展[J]. 水产科学, 2016, 35(5): 597-602.

    Guo Z S, Hou X G. Research progress on chromosome in family haliotidae[J]. Fisheries Science, 2016, 35(5): 597-602(in Chinese).
    [3]
    蔡明夷, 刘贤德, 陈紫瑩, 等. 皱纹盘鲍染色体C带和rDNA定位[J]. 水产学报, 2013, 37(7): 1002-1008.

    Cai M Y, Liu X D, Chen Z Y, et al. Characterization of Pacific abalone (Haliotis discus hannai) karyotype by C-banding and fluorescence in situ hybridization with rDNA[J]. Journal of Fisheries of China, 2013, 37(7): 1002-1008(in Chinese).
    [4]
    Cai M Y, Ke C H, Luo X, et al. Karyological studies of the hybrid larvae of Haliotis disversicolor supertexta female and Haliotis discus male[J]. Journal of Shellfish Research, 2010, 29(3): 735-741. doi: 10.2983/035.029.0327
    [5]
    权洁霞, 戴继勋. 荧光原位杂交技术(FISH)在鱼类遗传学研究中的应用及前景[J]. 动物学研究, 1999, 20(3): 225-229. doi: 10.3321/j.issn:0254-5853.1999.03.012

    Quan J X, Dai J X. Current and future application of fluorescence in situ hybridization (FISH) techniques to FISH genetics: a review[J]. Zoological Research, 1999, 20(3): 225-229(in Chinese). doi: 10.3321/j.issn:0254-5853.1999.03.012
    [6]
    Gallardo-Escárate C, Álvarez-Borrego J, Del Río-Portilla M A, et al. Karyotype analysis and chromosomal localization by FISH of ribosomal DNA, telomeric (TTAGGG)n and (GATA)n repeats in Haliotis fulgens and H. corrugata (Archeogastropoda: Haliotidae)[J]. Journal of Shellfish Research, 2005, 24(4): 1153-1160. doi: 10.2983/0730-8000(2005)24[1153:KAACLB]2.0.CO;2
    [7]
    Hernández-Ibarra N K, Ibarra A M, Cruz P, et al. FISH mapping of 5S rRNA genes in chromosomes of North American abalone species, Haliotis rufescens and H. fulgens[J]. Aquaculture, 2007, 272(Suppl 1): S268. doi: 10.1016/j.aquaculture.2007.07.086
    [8]
    Gallardo-Escárate C, Álvarez-Borrego J, Ángel Del Río-Portilla M, et al. Fluorescence in situ hybridization of rDNA, telomeric (TTAGGG)n and (GATA)n repeats in the red abalone Haliotis rufescens (Archaeogastropoda: Haliotidae)[J]. Hereditas, 2005, 142(2005): 73-79. doi: 10.1111/j.1601-5223.2005.01909.x
    [9]
    王海山. 三种鲍种间杂交的细胞遗传学研究[D]. 厦门: 厦门大学, 2014.

    Wang H S. Cytogenetic characterization of interspecies hybrids in three species of abalone[D]. Xiamen: Xiamen University, 2014 (in Chinese).
    [10]
    刘圆圆. 杂色鲍与皱纹盘鲍及其杂交子代的分子细胞遗传学研究[D]. 厦门: 厦门大学, 2016.

    Liu Y Y. Molecular Cytogenetic Studies on Haliotis diversicolor, H. discus hannai and the interspecific hybrid[D]. Xiamen: Xiamen University, 2016 (in Chinese).
    [11]
    Arai K, Tsubaki H, Ishitani Y, et al. Chromosomes of Haliotis discus hannai INO and H. discus REEVE[J]. Nippon Suisan Gakkaishi, 1982, 48(12): 1689-1692. doi: 10.2331/suisan.48.1689
    [12]
    杨文杰, 黄勃, 王仁恩, 等. 海南不同地理群体羊鲍18S rDNA的克隆与序列分析[J]. 安徽农业科学, 2012, 40(20): 10370-10373. doi: 10.3969/j.issn.0517-6611.2012.20.005

    Yang W J, Huang B, Wang R E, et al. Cloning and sequence analysis of Haliotis ovina 18S rDNA in the different geographical populations of Hainan[J]. Journal of Anhui Agricultural Sciences, 2012, 40(20): 10370-10373(in Chinese). doi: 10.3969/j.issn.0517-6611.2012.20.005
    [13]
    Levan A, Fredga K, Sandberg A A. Nomenclature for centromeric position on chromosomes[J]. Hereditas, 1964, 52(2): 201-220. doi: 10.1111/j.1601-5223.1964.tb01953.x
    [14]
    Martins C, Wasko A P. Organization and evolution of 5S ribosomal DNA in the fish genome[M]//Williams C R. Focus on Genome Research. New York: Nova Science Publishers, 2004: 335-363.
    [15]
    Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research[J]. Cytogenetic and Genome Research, 2013, 141(2-3): 90-102. doi: 10.1159/000354832
    [16]
    Yano C F, Poltronieri J, Bertollo L A C, et al. Chromosomal mapping of repetitive DNAs in Triportheus trifurcatus (Characidae, Characiformes): Insights into the differentiation of the Z and W chromosomes[J]. PLoS One, 2014, 9(3): e90946. doi: 10.1371/journal.pone.0090946
    [17]
    Wang H S, Luo X, You W W, et al. Cytogenetic analysis and chromosomal characteristics of the polymorphic 18S rDNA of Haliotis discus hannai from Fujian, China[J]. PLoS One, 2015, 10(2): e0113816. doi: 10.1371/journal.pone.0113816
    [18]
    朱齐春, 郑娇, 张静, 等. 眼斑拟石首鱼重复DNA序列的染色体定位[J]. 水生生物学报, 2017, 41(6): 1218-1224. doi: 10.7541/2017.151

    Zhu Q C, Zheng J, Zhang J, et al. Location of repetitive DNA sequences on the chromosome of Sciaenops ocellatus[J]. Acta Hydrobiologica Sinica, 2017, 41(6): 1218-1224(in Chinese). doi: 10.7541/2017.151
    [19]
    Sochorová J, Garcia S, Gálvez F, et al. Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database[J]. Chromosoma, 2018, 127(1): 141-150. doi: 10.1007/s00412-017-0651-8
    [20]
    Gromicho M, Coelho M M, Alves M J, et al. Cytogenetic analysis of Anaecypris hispanica and its relationship with the paternal ancestor of the diploid-polyploid Squalius alburnoides complex[J]. Genome, 2006, 49(12): 1621-1628. doi: 10.1139/g06-121
    [21]
    Książczyk T, Taciak M, Zwierzykowski Z. Variability of ribosomal DNA sites in Festuca pratensis, Lolium perenne, and their intergeneric hybrids, revealed by FISH and GISH[J]. Journal of Applied Genetics, 2010, 51(4): 449-460. doi: 10.1007/BF03208874
    [22]
    Cazaux B, Catalan J, Veyrunes F, et al. Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus Mus (Rodentia, Muridae)[J]. BMC Evolutionary Biology, 2011, 11: 124. doi: 10.1186/1471-2148-11-124
    [23]
    Symonová R, Majtánová Z, Sember A, et al. Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications[J]. BMC Evolutionary Biology, 2013, 13: 42. doi: 10.1186/1471-2148-13-42
    [24]
    Leighton D L, Lewis C A. Experimental hybridization in abalones[J]. International Journal of Invertebrate Reproduction, 1982, 5(5): 273-282. doi: 10.1080/01651269.1982.10553479
    [25]
    Roa F, Guerra M. Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications[J]. BMC Evolutionary Biology, 2012, 12: 225. doi: 10.1186/1471-2148-12-225
    [26]
    Kovarik A, Dadejova M, Lim Y K, et al. Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics[J]. Annals of Botany, 2008, 101(6): 815-823. doi: 10.1093/aob/mcn019
    [27]
    Pedrosa-Harand A, De Almeida C C S, Mosiolek M, et al. Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution[J]. Theoretical and Applied Genetics, 2006, 112(5): 924-933. doi: 10.1007/s00122-005-0196-8
    [28]
    Pich U, Fuchs J, Schubert I. How do Alliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences?[J]. Chromosome Research, 1996, 4(3): 207-213. doi: 10.1007/BF02254961.

Catalog

    Article views (7097) PDF downloads (78) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return