Citation: | ZHANG Jianpeng, WANG Tongyi, LUO Xuan, YOU Weiwei, KE Caihuan, CAI Mingyi. Comparative chromosome mapping of 45S rDNA in four species of abalone[J]. Journal of fisheries of china, 2019, 43(12): 2459-2467. DOI: 10.11964/jfc.20181211591 |
[1] |
Franchini P, Slabbert R, Van Der Merwe M, et al. Karyotype and genome size estimation of Haliotis midae: estimators to assist future studies on the evolutionary history of haliotidae[J]. Journal of Shellfish Research, 2010, 29(4): 945-950. doi: 10.2983/035.029.0428
|
[2] |
郭战胜, 侯旭光. 鲍科染色体研究进展[J]. 水产科学, 2016, 35(5): 597-602.
Guo Z S, Hou X G. Research progress on chromosome in family haliotidae[J]. Fisheries Science, 2016, 35(5): 597-602(in Chinese).
|
[3] |
蔡明夷, 刘贤德, 陈紫瑩, 等. 皱纹盘鲍染色体C带和rDNA定位[J]. 水产学报, 2013, 37(7): 1002-1008.
Cai M Y, Liu X D, Chen Z Y, et al. Characterization of Pacific abalone (Haliotis discus hannai) karyotype by C-banding and fluorescence in situ hybridization with rDNA[J]. Journal of Fisheries of China, 2013, 37(7): 1002-1008(in Chinese).
|
[4] |
Cai M Y, Ke C H, Luo X, et al. Karyological studies of the hybrid larvae of Haliotis disversicolor supertexta female and Haliotis discus male[J]. Journal of Shellfish Research, 2010, 29(3): 735-741. doi: 10.2983/035.029.0327
|
[5] |
权洁霞, 戴继勋. 荧光原位杂交技术(FISH)在鱼类遗传学研究中的应用及前景[J]. 动物学研究, 1999, 20(3): 225-229. doi: 10.3321/j.issn:0254-5853.1999.03.012
Quan J X, Dai J X. Current and future application of fluorescence in situ hybridization (FISH) techniques to FISH genetics: a review[J]. Zoological Research, 1999, 20(3): 225-229(in Chinese). doi: 10.3321/j.issn:0254-5853.1999.03.012
|
[6] |
Gallardo-Escárate C, Álvarez-Borrego J, Del Río-Portilla M A, et al. Karyotype analysis and chromosomal localization by FISH of ribosomal DNA, telomeric (TTAGGG)n and (GATA)n repeats in Haliotis fulgens and H. corrugata (Archeogastropoda: Haliotidae)[J]. Journal of Shellfish Research, 2005, 24(4): 1153-1160. doi: 10.2983/0730-8000(2005)24[1153:KAACLB]2.0.CO;2
|
[7] |
Hernández-Ibarra N K, Ibarra A M, Cruz P, et al. FISH mapping of 5S rRNA genes in chromosomes of North American abalone species, Haliotis rufescens and H. fulgens[J]. Aquaculture, 2007, 272(Suppl 1): S268. doi: 10.1016/j.aquaculture.2007.07.086
|
[8] |
Gallardo-Escárate C, Álvarez-Borrego J, Ángel Del Río-Portilla M, et al. Fluorescence in situ hybridization of rDNA, telomeric (TTAGGG)n and (GATA)n repeats in the red abalone Haliotis rufescens (Archaeogastropoda: Haliotidae)[J]. Hereditas, 2005, 142(2005): 73-79. doi: 10.1111/j.1601-5223.2005.01909.x
|
[9] |
王海山. 三种鲍种间杂交的细胞遗传学研究[D]. 厦门: 厦门大学, 2014.
Wang H S. Cytogenetic characterization of interspecies hybrids in three species of abalone[D]. Xiamen: Xiamen University, 2014 (in Chinese).
|
[10] |
刘圆圆. 杂色鲍与皱纹盘鲍及其杂交子代的分子细胞遗传学研究[D]. 厦门: 厦门大学, 2016.
Liu Y Y. Molecular Cytogenetic Studies on Haliotis diversicolor, H. discus hannai and the interspecific hybrid[D]. Xiamen: Xiamen University, 2016 (in Chinese).
|
[11] |
Arai K, Tsubaki H, Ishitani Y, et al. Chromosomes of Haliotis discus hannai INO and H. discus REEVE[J]. Nippon Suisan Gakkaishi, 1982, 48(12): 1689-1692. doi: 10.2331/suisan.48.1689
|
[12] |
杨文杰, 黄勃, 王仁恩, 等. 海南不同地理群体羊鲍18S rDNA的克隆与序列分析[J]. 安徽农业科学, 2012, 40(20): 10370-10373. doi: 10.3969/j.issn.0517-6611.2012.20.005
Yang W J, Huang B, Wang R E, et al. Cloning and sequence analysis of Haliotis ovina 18S rDNA in the different geographical populations of Hainan[J]. Journal of Anhui Agricultural Sciences, 2012, 40(20): 10370-10373(in Chinese). doi: 10.3969/j.issn.0517-6611.2012.20.005
|
[13] |
Levan A, Fredga K, Sandberg A A. Nomenclature for centromeric position on chromosomes[J]. Hereditas, 1964, 52(2): 201-220. doi: 10.1111/j.1601-5223.1964.tb01953.x
|
[14] |
Martins C, Wasko A P. Organization and evolution of 5S ribosomal DNA in the fish genome[M]//Williams C R. Focus on Genome Research. New York: Nova Science Publishers, 2004: 335-363.
|
[15] |
Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research[J]. Cytogenetic and Genome Research, 2013, 141(2-3): 90-102. doi: 10.1159/000354832
|
[16] |
Yano C F, Poltronieri J, Bertollo L A C, et al. Chromosomal mapping of repetitive DNAs in Triportheus trifurcatus (Characidae, Characiformes): Insights into the differentiation of the Z and W chromosomes[J]. PLoS One, 2014, 9(3): e90946. doi: 10.1371/journal.pone.0090946
|
[17] |
Wang H S, Luo X, You W W, et al. Cytogenetic analysis and chromosomal characteristics of the polymorphic 18S rDNA of Haliotis discus hannai from Fujian, China[J]. PLoS One, 2015, 10(2): e0113816. doi: 10.1371/journal.pone.0113816
|
[18] |
朱齐春, 郑娇, 张静, 等. 眼斑拟石首鱼重复DNA序列的染色体定位[J]. 水生生物学报, 2017, 41(6): 1218-1224. doi: 10.7541/2017.151
Zhu Q C, Zheng J, Zhang J, et al. Location of repetitive DNA sequences on the chromosome of Sciaenops ocellatus[J]. Acta Hydrobiologica Sinica, 2017, 41(6): 1218-1224(in Chinese). doi: 10.7541/2017.151
|
[19] |
Sochorová J, Garcia S, Gálvez F, et al. Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database[J]. Chromosoma, 2018, 127(1): 141-150. doi: 10.1007/s00412-017-0651-8
|
[20] |
Gromicho M, Coelho M M, Alves M J, et al. Cytogenetic analysis of Anaecypris hispanica and its relationship with the paternal ancestor of the diploid-polyploid Squalius alburnoides complex[J]. Genome, 2006, 49(12): 1621-1628. doi: 10.1139/g06-121
|
[21] |
Książczyk T, Taciak M, Zwierzykowski Z. Variability of ribosomal DNA sites in Festuca pratensis, Lolium perenne, and their intergeneric hybrids, revealed by FISH and GISH[J]. Journal of Applied Genetics, 2010, 51(4): 449-460. doi: 10.1007/BF03208874
|
[22] |
Cazaux B, Catalan J, Veyrunes F, et al. Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus Mus (Rodentia, Muridae)[J]. BMC Evolutionary Biology, 2011, 11: 124. doi: 10.1186/1471-2148-11-124
|
[23] |
Symonová R, Majtánová Z, Sember A, et al. Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications[J]. BMC Evolutionary Biology, 2013, 13: 42. doi: 10.1186/1471-2148-13-42
|
[24] |
Leighton D L, Lewis C A. Experimental hybridization in abalones[J]. International Journal of Invertebrate Reproduction, 1982, 5(5): 273-282. doi: 10.1080/01651269.1982.10553479
|
[25] |
Roa F, Guerra M. Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications[J]. BMC Evolutionary Biology, 2012, 12: 225. doi: 10.1186/1471-2148-12-225
|
[26] |
Kovarik A, Dadejova M, Lim Y K, et al. Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics[J]. Annals of Botany, 2008, 101(6): 815-823. doi: 10.1093/aob/mcn019
|
[27] |
Pedrosa-Harand A, De Almeida C C S, Mosiolek M, et al. Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution[J]. Theoretical and Applied Genetics, 2006, 112(5): 924-933. doi: 10.1007/s00122-005-0196-8
|
[28] |
Pich U, Fuchs J, Schubert I. How do Alliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences?[J]. Chromosome Research, 1996, 4(3): 207-213. doi: 10.1007/BF02254961.
|