Citation: | ZHAO Yueji, GUO Haipeng, ZHANG Demin. Effects of different culture patterns on the intestinal microbiota of Litopenaeus vannamei[J]. Journal of fisheries of china, 2021, 45(2): 221-234. DOI: 10.11964/jfc.20200312196 |
[1] |
刘晓慧. 不同来源的虾青素对凡纳滨对虾幼虾的影响及作用机制[D]. 北京: 中国科学院大学, 2018: 1-12.
Liu X H. Effect of natural and synthetic astaxanthin on Litopenaeus vannamei, in the nursery phase[D]. Beijing: University of Chinese Academy of Sciences, 2018: 1-12 (in Chinese).
|
[2] |
康保超. 南美白对虾养殖效益和社会经济学分析[D]. 南京: 南京农业大学, 2014: 1-10.
Kang B C. Economic benefit and social economics analysis on Litopenaeus vannamel farming[D]. Nanjing: Nanjing Agricultural University, 2014: 1-10 (in Chinese).
|
[3] |
Xie B, Yu K J. Shrimp farming in China: operating characteristics, environmental impact and perspectives[J]. Ocean & Coastal Management, 2007, 50(7): 538-550.
|
[4] |
Ullman C, Rhodes M A, Davis D A. Feed management and the use of automatic feeders in the pond production of Pacific white shrimp Litopenaeus vannamei[J]. Aquaculture, 2019, 498: 44-49. doi: 10.1016/j.aquaculture.2018.08.040
|
[5] |
Hopkins J S, Sandifer P A, Browdy C L. Sludge management in intensive pond culture of shrimp: effect of management regime on water quality, sludge characteristics, nitrogen extinction, and shrimp production[J]. Aquacultural Engineering, 1994, 13(1): 11-30. doi: 10.1016/0144-8609(94)90022-1
|
[6] |
Bossier P, Ekasari J. Biofloc technology application in aquaculture to support sustainable development goals[J]. Microbial Biotechnology, 2017, 10(5): 1012-1016. doi: 10.1111/1751-7915.12836
|
[7] |
朱亦晨, 谭洪新, 罗国芝. 养殖密度对硝化型生物絮团系统中凡纳滨对虾生长和水质的影响. 上海: 上海海洋大学, 2020, 29(1): 27-35.
Zhu Y C, Tan H X, Luo G Z. Effect of different stocking density on growth performance of Litopenaeus vannamei and water quality in nitrifying bio-floc system[J]. Journal of Shanghai Ocean University, 2020, 29(1): 27-35 (in Chinese).
|
[8] |
Sommer F, Anderson J M, Bharti R, et al. The resilience of the intestinal microbiota influences health and disease[J]. Nature Reviews Microbiology, 2017, 15(10): 630-638. doi: 10.1038/nrmicro.2017.58
|
[9] |
Messer J S, Liechty E R, Vogel O A, et al. Evolutionary and ecological forces that shape the bacterial communities of the human gut[J]. Mucosal Immunology, 2017, 10(3): 567-579. doi: 10.1038/mi.2016.138
|
[10] |
Libertucci J, Young V B. The role of the microbiota in infectious diseases[J]. Nature Microbiology, 2019, 4(1): 35-45. doi: 10.1038/s41564-018-0278-4
|
[11] |
Zhang Z Y, Tang H S, Chen P, et al. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome[J]. Signal Transduction and Targeted Therapy, 2019, 4(1): 41. doi: 10.1038/s41392-019-0074-5
|
[12] |
Allan G L, Maguire G B. Effects of stocking density on production of Penaeus monodon Fabricius in model farming ponds[J]. Aquaculture, 1992, 107(1): 49-66. doi: 10.1016/0044-8486(92)90049-Q
|
[13] |
Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336. doi: 10.1038/nmeth.f.303
|
[14] |
胡健微. 肠道微生物相互作用的研究及体外肠道模拟系统的构建和应用[D]. 长春: 吉林大学, 2017: 1-6.
Hu J W. Interaction of intestinal microbes and construction and application of intrinsic intestinal simulation system[D]. Changchun: Jilin University, 2017: 1-6 (in Chinese).
|
[15] |
邓冠华. 抗微生物药长期给药对小鼠肠道微生物组多样性的影响[D]. 广州: 南方医科大学, 2013: 1-39.
Deng G H. Effects of long-term treatment of anti-microbial drugs on mouse cut microbiota determined with Illumina sequencing of 16S rRNA tags[D]. Guangzhou: Southern Medical University, 2013: 1-39 (in Chinese).
|
[16] |
Dai W F, Sheng Z L, Chen J, et al. Shrimp disease progression increases the gut bacterial network complexity and abundances of keystone taxa[J]. Aquaculture, 2020, 517: 734802. doi: 10.1016/j.aquaculture.2019.734802
|
[17] |
Yan Q Y, Li J J, Yu Y H, et al. Environmental filtering decreases with fish development for the assembly of gut microbiota[J]. Environmental Microbiology, 2016, 18(12): 4739-4754. doi: 10.1111/1462-2920.13365
|
[18] |
Yang W, Zheng C, Zheng Z M, et al. Nutrient enrichment during shrimp cultivation alters bacterioplankton assemblies and destroys community stability[J]. Ecotoxicology and Environmental Safety, 2018, 156: 366-374. doi: 10.1016/j.ecoenv.2018.03.043
|
[19] |
Zhang M L, Sun Y H, Chen K, et al. Characterization of the intestinal microbiota in Pacific white shrimp, Litopenaeus vannamei, fed diets with different lipid sources[J]. Aquaculture, 2014, 434: 449-455. doi: 10.1016/j.aquaculture.2014.09.008
|
[20] |
Burns A R, Stephens W Z, Stagaman K, et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development[J]. The ISME Journal, 2016, 10(3): 655-664. doi: 10.1038/ismej.2015.142
|
[21] |
Hou D, Huang Z, Zeng S, et al. Comparative analysis of the bacterial community compositions of the shrimp intestine, surrounding water and sediment[J]. Journal of Applied Microbiology, 2018, 125(3): 792-799. doi: 10.1111/jam.13919
|
[22] |
Wang J, Huang Y J, Xu K H, et al. White spot syndrome virus (WSSV) infection impacts intestinal microbiota composition and function in Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2019, 84: 130-137.
|
[23] |
Cardona E, Gueguen Y, Magré K, et al. Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system[J]. BMC Microbiology, 2016, 16(1): 157. doi: 10.1186/s12866-016-0770-z
|
[24] |
Fan L F, Wang Z L, Chen M S, et al. Microbiota comparison of Pacific white shrimp intestine and sediment at freshwater and marine cultured environment[J]. Science of the Total Environment, 2019, 657: 1194-1204. doi: 10.1016/j.scitotenv.2018.12.069
|
[25] |
Zhou J F, Fang W H, Yang X L, et al. A nonluminescent and highly virulent Vibrio harveyi strain is associated with “bacterial white tail disease” of Litopenaeus vannamei shrimp[J]. PloS One, 2012, 7(2): e29961. doi: 10.1371/journal.pone.0029961
|
[26] |
Holben W E, Williams P, Saarinen M, et al. Phylogenetic analysis of intestinal microflora indicates a novel mycoplasma phylotype in farmed and wild salmon[J]. Microbial Ecology, 2002, 44(2): 175-185. doi: 10.1007/s00248-002-1011-6
|
[27] |
Sung H H, Hsu S F, Chen C K, et al. Relationships between disease outbreak in cultured tiger shrimp (Penaeus monodon) and the composition of Vibrio communities in pond water and shrimp hepatopancreas during cultivation[J]. Aquaculture, 2001, 192(2-4): 101-110. doi: 10.1016/S0044-8486(00)00458-0
|
[28] |
Jayasree L, Janakiram P, Madhavi R. Characterization of Vibrio spp. associated with diseased shrimp from culture ponds of Andhra Pradesh (India)[J]. Journal of the World Aquaculture Society, 2006, 37(4): 523-532. doi: 10.1111/j.1749-7345.2006.00066.x
|
[29] |
Karunasagar I, Karunasagar I, Umesha R K. Microbial diseases in shrimp aquaculture[M]. National Institute of Oceanography, 2004, 13: 121-134.
|
[30] |
Chan L Y, Chan J C. Mycoplasma pneumoniae infection presenting as haemolytic anaemia[J]. British Journal of Hospital Medicine, 1997, 58(4): 170-171.
|
[31] |
Huang S, Li J Y, Wu J, et al. Mycoplasma infections and different human carcinomas[J]. World Journal of Gastroenterology, 2001, 7(2): 266-269. doi: 10.3748/wjg.v7.i2.266
|
[32] |
Deeseenthum S, Leelavatcharamas V, Brooks J D. Effect of feeding Bacillus sp. as probiotic bacteria on growth of giant freshwater prawn (Macrobrachium rosenbergii de Man)[J]. Pakistan Journal of Biological Sciences, 2007, 10(9): 1481-1485. doi: 10.3923/pjbs.2007.1481.1485
|
[33] |
Krol R M, Hawkins W E, Overstreet R M. Rickettsial and mollicute infections in hepatopancreatic cells of cultured Pacific white shrimp (Penaeus vannamei)[J]. Journal of Invertebrate Pathology, 1991, 57(3): 362-370. doi: 10.1016/0022-2011(91)90140-L
|
[34] |
杨季芳. 支原体在暴发性虾病中的作用、地位及其他病原微生物的关系[C]//第二届全国人工养殖对虾疾病综合防治和环境管理学术研讨会. 青岛: 中国海洋潮沼学会, 2007.
Yang J F. The role and status of mycoplasma in fulminant shrimp disease and the relationship between other pathogenic microorganisms[C]//The 2nd National Symposium on Integrated Control and Environmental Management of Artificial Shrimp Diseases. Qingdao: Chinese Society for Oceanology and Limnology, 2007 (in Chinese).
|
[35] |
林克冰, 周宸, 刘家富, 等. 海水网箱养殖大黄鱼病原菌研究[J]. 海洋科学, 1999, 23(4): 58-62. doi: 10.3969/j.issn.1000-3096.1999.04.021
Lin K B, Zhou C, Liu J F, et al. Studies on the pathogenic bacteria of Pseudosciaena crocea in marine cage culture[J]. Marine Sciences, 1999, 23(4): 58-62(in Chinese). doi: 10.3969/j.issn.1000-3096.1999.04.021
|
[36] |
胡超群, 陶保华. 综述: 对虾弧菌病及其免疫预防的研究进展[J]. 热带海洋, 2000, 19(3): 84-94.
Hu C Q, Tao B H. Penaeid shrimp vibriosis and immune prevention: a review[J]. Tropic Oceanology, 2000, 19(3): 84-94(in Chinese).
|
[37] |
Xiong J B, Wang K, Wu J F, et al. Changes in intestinal bacterial communities are closely associated with shrimp disease severity[J]. Applied Microbiology and Biotechnology, 2015, 99(16): 6911-6919. doi: 10.1007/s00253-015-6632-z
|
[38] |
Alvarez S, Medici M, Vintini E, et al. Effect of the oral administration of Propionibacterium acidi-propionici on IgA levels and on the prevention of enteric infection in mice[J]. Microbiologie Aliments Nutrition, 1996, 14(3): 237-244.
|
[39] |
Das S, Ward L R, Burke C. Prospects of using marine actinobacteria as probiotics in aquaculture[J]. Applied Microbiology and Biotechnology, 2008, 81(3): 419-429. doi: 10.1007/s00253-008-1731-8
|
[40] |
Fan L F, Li Q X. Characteristics of intestinal microbiota in the Pacific white shrimp Litopenaeus vannamei differing growth performances in the marine cultured environment[J]. Aquaculture, 2019, 505: 450-461. doi: 10.1016/j.aquaculture.2019.02.075
|
[41] |
张海耿, 马绍赛, 李秋芬, 等. 循环水养殖系统(RAS)生物载体上微生物群落结构变化分析[J]. 环境科学, 2011, 32(1): 231-239.
Zhang H G, Ma S S, Li Q F, et al. Analysis of the changes of microbial community structure on bio-carrier of recirculating aquaculture system (RAS)[J]. Environmental Science, 2011, 32(1): 231-239(in Chinese).
|
[42] |
Huang L, Guo H P, Chen C, et al. The bacteria from large-sized bioflocs are more associated with the shrimp gut microbiota in culture system[J]. Aquaculture, 2020, 523: 735159. doi: 10.1016/j.aquaculture.2020.735159
|
[43] |
Michaud L, Lo Giudice A, Troussellier M, et al. Phylogenetic characterization of the heterotrophic bacterial communities inhabiting a marine recirculating aquaculture system[J]. Journal of Applied Microbiology, 2009, 107(6): 1935-1946. doi: 10.1111/j.1365-2672.2009.04378.x
|
[44] |
Landsman A, St-Pierre B, Rosales-Leija M, et al. Impact of aquaculture practices on intestinal bacterial profiles of pacific whiteleg shrimp Litopenaeus vannamei[J]. Microorganisms, 2019, 7(4): 93. doi: 10.3390/microorganisms7040093
|
[45] |
Shi S J, Nuccio E E, Shi Z J, et al. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages[J]. Ecology Letters, 2016, 19(8): 926-936. doi: 10.1111/ele.12630
|
[46] |
Lu L H, Yin S X, Liu X, et al. Fungal networks in yield-invigorating and-debilitating soils induced by prolonged potato monoculture[J]. Soil Biology and Biochemistry, 2013, 65: 186-194. doi: 10.1016/j.soilbio.2013.05.025
|
[47] |
Tseng D Y, Ho P L, Huang S Y, et al. Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20[J]. Fish & Shellfish Immunology, 2009, 26(2): 339-344.
|
[48] |
De Vries F T, Griffiths R I, Bailey M, et al. Soil bacterial networks are less stable under drought than fungal networks[J]. Nature Communications, 2018, 9(1): 3033. doi: 10.1038/s41467-018-05516-7
|
[49] |
Olesen J M, Bascompte J, Dupont Y L, et al. The modularity of pollination networks[J]. Proceedings of the National Academy of Sciences, 2007, 104(50): 19891-19896. doi: 10.1073/pnas.0706375104
|