• ISSN 1000-0615
  • CN 31-1283/S
ZHAO Yueji, GUO Haipeng, ZHANG Demin. Effects of different culture patterns on the intestinal microbiota of Litopenaeus vannamei[J]. Journal of fisheries of china, 2021, 45(2): 221-234. DOI: 10.11964/jfc.20200312196
Citation: ZHAO Yueji, GUO Haipeng, ZHANG Demin. Effects of different culture patterns on the intestinal microbiota of Litopenaeus vannamei[J]. Journal of fisheries of china, 2021, 45(2): 221-234. DOI: 10.11964/jfc.20200312196

Effects of different culture patterns on the intestinal microbiota of Litopenaeus vannamei

Funds: National Natural Science Foundation of China (31672658); Agricultural Major Project of Ningbo, China (2017C110001)
More Information
  • Corresponding author:

    GUO Haipeng. E-mail: guohaipeng@nub.edu.cn

  • Received Date: March 17, 2020
  • Revised Date: May 25, 2020
  • Available Online: September 01, 2020
  • Published Date: January 31, 2021
  • To explore the differences of intestinal microbiota for Litopenaeus vannamei in different culture patterns, bacterial diversity and bacterial community composition of L. vannamei from different culture patterns including freshwater pond (FWP), seawater pond (SP), high-intensive pond (HP) and biofloc technology pond (BFP) were studied by using the 16S rRNA gene amplicon sequencing technology in this study. The results showed that the α-diversity indexes of FWP and HP were significantly higher than those of SP and BFP. The relative abundances of intestinal microbiota compositions were significantly different among the four culture patterns. Proteobacteria had the maximal abundance in SP, BFP and HP culture patterns and contributed to the biggest differences for the four culture patterns. The abundance of Cyanobacteria in FWP culture pattern was far higher than that in other culture patterns. Vibrionaceae (Proteobacteria) and Mycoplasmataceae (Tenericutes) were the top two abundant families of core microbiota among the four culture patterns. In addition, the indicators of different culture patterns were different. The indicator group of intestinal bacteria in FWP culture pattern was Propionibacteriaceae, and it was Flavobacteriaceae in BFP culture pattern. Co-occurrence network analysis found that the interactions of intestinal microbiota in the HP culture pattern were higher than that in other three culture patterns, and the co-occurrence network of FWP was the most stable.
  • [1]
    刘晓慧. 不同来源的虾青素对凡纳滨对虾幼虾的影响及作用机制[D]. 北京: 中国科学院大学, 2018: 1-12.

    Liu X H. Effect of natural and synthetic astaxanthin on Litopenaeus vannamei, in the nursery phase[D]. Beijing: University of Chinese Academy of Sciences, 2018: 1-12 (in Chinese).
    [2]
    康保超. 南美白对虾养殖效益和社会经济学分析[D]. 南京: 南京农业大学, 2014: 1-10.

    Kang B C. Economic benefit and social economics analysis on Litopenaeus vannamel farming[D]. Nanjing: Nanjing Agricultural University, 2014: 1-10 (in Chinese).
    [3]
    Xie B, Yu K J. Shrimp farming in China: operating characteristics, environmental impact and perspectives[J]. Ocean & Coastal Management, 2007, 50(7): 538-550.
    [4]
    Ullman C, Rhodes M A, Davis D A. Feed management and the use of automatic feeders in the pond production of Pacific white shrimp Litopenaeus vannamei[J]. Aquaculture, 2019, 498: 44-49. doi: 10.1016/j.aquaculture.2018.08.040
    [5]
    Hopkins J S, Sandifer P A, Browdy C L. Sludge management in intensive pond culture of shrimp: effect of management regime on water quality, sludge characteristics, nitrogen extinction, and shrimp production[J]. Aquacultural Engineering, 1994, 13(1): 11-30. doi: 10.1016/0144-8609(94)90022-1
    [6]
    Bossier P, Ekasari J. Biofloc technology application in aquaculture to support sustainable development goals[J]. Microbial Biotechnology, 2017, 10(5): 1012-1016. doi: 10.1111/1751-7915.12836
    [7]
    朱亦晨, 谭洪新, 罗国芝. 养殖密度对硝化型生物絮团系统中凡纳滨对虾生长和水质的影响. 上海: 上海海洋大学, 2020, 29(1): 27-35.

    Zhu Y C, Tan H X, Luo G Z. Effect of different stocking density on growth performance of Litopenaeus vannamei and water quality in nitrifying bio-floc system[J]. Journal of Shanghai Ocean University, 2020, 29(1): 27-35 (in Chinese).
    [8]
    Sommer F, Anderson J M, Bharti R, et al. The resilience of the intestinal microbiota influences health and disease[J]. Nature Reviews Microbiology, 2017, 15(10): 630-638. doi: 10.1038/nrmicro.2017.58
    [9]
    Messer J S, Liechty E R, Vogel O A, et al. Evolutionary and ecological forces that shape the bacterial communities of the human gut[J]. Mucosal Immunology, 2017, 10(3): 567-579. doi: 10.1038/mi.2016.138
    [10]
    Libertucci J, Young V B. The role of the microbiota in infectious diseases[J]. Nature Microbiology, 2019, 4(1): 35-45. doi: 10.1038/s41564-018-0278-4
    [11]
    Zhang Z Y, Tang H S, Chen P, et al. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome[J]. Signal Transduction and Targeted Therapy, 2019, 4(1): 41. doi: 10.1038/s41392-019-0074-5
    [12]
    Allan G L, Maguire G B. Effects of stocking density on production of Penaeus monodon Fabricius in model farming ponds[J]. Aquaculture, 1992, 107(1): 49-66. doi: 10.1016/0044-8486(92)90049-Q
    [13]
    Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336. doi: 10.1038/nmeth.f.303
    [14]
    胡健微. 肠道微生物相互作用的研究及体外肠道模拟系统的构建和应用[D]. 长春: 吉林大学, 2017: 1-6.

    Hu J W. Interaction of intestinal microbes and construction and application of intrinsic intestinal simulation system[D]. Changchun: Jilin University, 2017: 1-6 (in Chinese).
    [15]
    邓冠华. 抗微生物药长期给药对小鼠肠道微生物组多样性的影响[D]. 广州: 南方医科大学, 2013: 1-39.

    Deng G H. Effects of long-term treatment of anti-microbial drugs on mouse cut microbiota determined with Illumina sequencing of 16S rRNA tags[D]. Guangzhou: Southern Medical University, 2013: 1-39 (in Chinese).
    [16]
    Dai W F, Sheng Z L, Chen J, et al. Shrimp disease progression increases the gut bacterial network complexity and abundances of keystone taxa[J]. Aquaculture, 2020, 517: 734802. doi: 10.1016/j.aquaculture.2019.734802
    [17]
    Yan Q Y, Li J J, Yu Y H, et al. Environmental filtering decreases with fish development for the assembly of gut microbiota[J]. Environmental Microbiology, 2016, 18(12): 4739-4754. doi: 10.1111/1462-2920.13365
    [18]
    Yang W, Zheng C, Zheng Z M, et al. Nutrient enrichment during shrimp cultivation alters bacterioplankton assemblies and destroys community stability[J]. Ecotoxicology and Environmental Safety, 2018, 156: 366-374. doi: 10.1016/j.ecoenv.2018.03.043
    [19]
    Zhang M L, Sun Y H, Chen K, et al. Characterization of the intestinal microbiota in Pacific white shrimp, Litopenaeus vannamei, fed diets with different lipid sources[J]. Aquaculture, 2014, 434: 449-455. doi: 10.1016/j.aquaculture.2014.09.008
    [20]
    Burns A R, Stephens W Z, Stagaman K, et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development[J]. The ISME Journal, 2016, 10(3): 655-664. doi: 10.1038/ismej.2015.142
    [21]
    Hou D, Huang Z, Zeng S, et al. Comparative analysis of the bacterial community compositions of the shrimp intestine, surrounding water and sediment[J]. Journal of Applied Microbiology, 2018, 125(3): 792-799. doi: 10.1111/jam.13919
    [22]
    Wang J, Huang Y J, Xu K H, et al. White spot syndrome virus (WSSV) infection impacts intestinal microbiota composition and function in Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2019, 84: 130-137.
    [23]
    Cardona E, Gueguen Y, Magré K, et al. Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system[J]. BMC Microbiology, 2016, 16(1): 157. doi: 10.1186/s12866-016-0770-z
    [24]
    Fan L F, Wang Z L, Chen M S, et al. Microbiota comparison of Pacific white shrimp intestine and sediment at freshwater and marine cultured environment[J]. Science of the Total Environment, 2019, 657: 1194-1204. doi: 10.1016/j.scitotenv.2018.12.069
    [25]
    Zhou J F, Fang W H, Yang X L, et al. A nonluminescent and highly virulent Vibrio harveyi strain is associated with “bacterial white tail disease” of Litopenaeus vannamei shrimp[J]. PloS One, 2012, 7(2): e29961. doi: 10.1371/journal.pone.0029961
    [26]
    Holben W E, Williams P, Saarinen M, et al. Phylogenetic analysis of intestinal microflora indicates a novel mycoplasma phylotype in farmed and wild salmon[J]. Microbial Ecology, 2002, 44(2): 175-185. doi: 10.1007/s00248-002-1011-6
    [27]
    Sung H H, Hsu S F, Chen C K, et al. Relationships between disease outbreak in cultured tiger shrimp (Penaeus monodon) and the composition of Vibrio communities in pond water and shrimp hepatopancreas during cultivation[J]. Aquaculture, 2001, 192(2-4): 101-110. doi: 10.1016/S0044-8486(00)00458-0
    [28]
    Jayasree L, Janakiram P, Madhavi R. Characterization of Vibrio spp. associated with diseased shrimp from culture ponds of Andhra Pradesh (India)[J]. Journal of the World Aquaculture Society, 2006, 37(4): 523-532. doi: 10.1111/j.1749-7345.2006.00066.x
    [29]
    Karunasagar I, Karunasagar I, Umesha R K. Microbial diseases in shrimp aquaculture[M]. National Institute of Oceanography, 2004, 13: 121-134.
    [30]
    Chan L Y, Chan J C. Mycoplasma pneumoniae infection presenting as haemolytic anaemia[J]. British Journal of Hospital Medicine, 1997, 58(4): 170-171.
    [31]
    Huang S, Li J Y, Wu J, et al. Mycoplasma infections and different human carcinomas[J]. World Journal of Gastroenterology, 2001, 7(2): 266-269. doi: 10.3748/wjg.v7.i2.266
    [32]
    Deeseenthum S, Leelavatcharamas V, Brooks J D. Effect of feeding Bacillus sp. as probiotic bacteria on growth of giant freshwater prawn (Macrobrachium rosenbergii de Man)[J]. Pakistan Journal of Biological Sciences, 2007, 10(9): 1481-1485. doi: 10.3923/pjbs.2007.1481.1485
    [33]
    Krol R M, Hawkins W E, Overstreet R M. Rickettsial and mollicute infections in hepatopancreatic cells of cultured Pacific white shrimp (Penaeus vannamei)[J]. Journal of Invertebrate Pathology, 1991, 57(3): 362-370. doi: 10.1016/0022-2011(91)90140-L
    [34]
    杨季芳. 支原体在暴发性虾病中的作用、地位及其他病原微生物的关系[C]//第二届全国人工养殖对虾疾病综合防治和环境管理学术研讨会. 青岛: 中国海洋潮沼学会, 2007.

    Yang J F. The role and status of mycoplasma in fulminant shrimp disease and the relationship between other pathogenic microorganisms[C]//The 2nd National Symposium on Integrated Control and Environmental Management of Artificial Shrimp Diseases. Qingdao: Chinese Society for Oceanology and Limnology, 2007 (in Chinese).
    [35]
    林克冰, 周宸, 刘家富, 等. 海水网箱养殖大黄鱼病原菌研究[J]. 海洋科学, 1999, 23(4): 58-62. doi: 10.3969/j.issn.1000-3096.1999.04.021

    Lin K B, Zhou C, Liu J F, et al. Studies on the pathogenic bacteria of Pseudosciaena crocea in marine cage culture[J]. Marine Sciences, 1999, 23(4): 58-62(in Chinese). doi: 10.3969/j.issn.1000-3096.1999.04.021
    [36]
    胡超群, 陶保华. 综述: 对虾弧菌病及其免疫预防的研究进展[J]. 热带海洋, 2000, 19(3): 84-94.

    Hu C Q, Tao B H. Penaeid shrimp vibriosis and immune prevention: a review[J]. Tropic Oceanology, 2000, 19(3): 84-94(in Chinese).
    [37]
    Xiong J B, Wang K, Wu J F, et al. Changes in intestinal bacterial communities are closely associated with shrimp disease severity[J]. Applied Microbiology and Biotechnology, 2015, 99(16): 6911-6919. doi: 10.1007/s00253-015-6632-z
    [38]
    Alvarez S, Medici M, Vintini E, et al. Effect of the oral administration of Propionibacterium acidi-propionici on IgA levels and on the prevention of enteric infection in mice[J]. Microbiologie Aliments Nutrition, 1996, 14(3): 237-244.
    [39]
    Das S, Ward L R, Burke C. Prospects of using marine actinobacteria as probiotics in aquaculture[J]. Applied Microbiology and Biotechnology, 2008, 81(3): 419-429. doi: 10.1007/s00253-008-1731-8
    [40]
    Fan L F, Li Q X. Characteristics of intestinal microbiota in the Pacific white shrimp Litopenaeus vannamei differing growth performances in the marine cultured environment[J]. Aquaculture, 2019, 505: 450-461. doi: 10.1016/j.aquaculture.2019.02.075
    [41]
    张海耿, 马绍赛, 李秋芬, 等. 循环水养殖系统(RAS)生物载体上微生物群落结构变化分析[J]. 环境科学, 2011, 32(1): 231-239.

    Zhang H G, Ma S S, Li Q F, et al. Analysis of the changes of microbial community structure on bio-carrier of recirculating aquaculture system (RAS)[J]. Environmental Science, 2011, 32(1): 231-239(in Chinese).
    [42]
    Huang L, Guo H P, Chen C, et al. The bacteria from large-sized bioflocs are more associated with the shrimp gut microbiota in culture system[J]. Aquaculture, 2020, 523: 735159. doi: 10.1016/j.aquaculture.2020.735159
    [43]
    Michaud L, Lo Giudice A, Troussellier M, et al. Phylogenetic characterization of the heterotrophic bacterial communities inhabiting a marine recirculating aquaculture system[J]. Journal of Applied Microbiology, 2009, 107(6): 1935-1946. doi: 10.1111/j.1365-2672.2009.04378.x
    [44]
    Landsman A, St-Pierre B, Rosales-Leija M, et al. Impact of aquaculture practices on intestinal bacterial profiles of pacific whiteleg shrimp Litopenaeus vannamei[J]. Microorganisms, 2019, 7(4): 93. doi: 10.3390/microorganisms7040093
    [45]
    Shi S J, Nuccio E E, Shi Z J, et al. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages[J]. Ecology Letters, 2016, 19(8): 926-936. doi: 10.1111/ele.12630
    [46]
    Lu L H, Yin S X, Liu X, et al. Fungal networks in yield-invigorating and-debilitating soils induced by prolonged potato monoculture[J]. Soil Biology and Biochemistry, 2013, 65: 186-194. doi: 10.1016/j.soilbio.2013.05.025
    [47]
    Tseng D Y, Ho P L, Huang S Y, et al. Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20[J]. Fish & Shellfish Immunology, 2009, 26(2): 339-344.
    [48]
    De Vries F T, Griffiths R I, Bailey M, et al. Soil bacterial networks are less stable under drought than fungal networks[J]. Nature Communications, 2018, 9(1): 3033. doi: 10.1038/s41467-018-05516-7
    [49]
    Olesen J M, Bascompte J, Dupont Y L, et al. The modularity of pollination networks[J]. Proceedings of the National Academy of Sciences, 2007, 104(50): 19891-19896. doi: 10.1073/pnas.0706375104

Catalog

    Article views (1837) PDF downloads (110) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return