基于预测PID的工厂化水产养殖溶解氧调控方法

A PID prediction-based method for dissolved oxygen control in industrial aquaculture

  • 摘要:
    目的 为了应对溶解氧(DO)调控过程中表现出的非线性、时变、大滞后等特性,实现工厂化水产养殖DO的精准调控。
    方法 提出了一种基于预测比例积分微分(PID)的调控方法。首先,通过液氧曝气实验,建立能描述曝气流量和DO含量之间动态响应关系的传递函数模型。引入了基于快速和慢速学习样本卷积交互网络(FSSCINET)预测与量子神经网络自适应的PID控制器(QNN-PID),以提高系统的快速响应能力和抗干扰能力。在FSSCINET-QNN-PID中,设计了FSSCINET溶解氧在线预测模型,在样本卷积交互网络(SCINET)中引入快速和慢速学习网络(FSNET)中的适配器和记忆模块,以提高其动态环境中的适应能力和预测精度。最后,利用QNN的快速学习能力在线更新PID的控制参数,提高控制器的自适应能力。
    结果 与SCINET和FSNET 相比,FSSCINET的预测效果更好,其均方误差、平均绝对误差和均方根误差分别为0.037 5、 0.155 4和0.193 7。在DO设定值跟踪仿真实验中,与PID和QNN-PID相比,所提出的FSSCINET-QNN-PID调节时间减少到738 s,并且超调更小。在DO调控实验中,FSSCINET-QNN-PID可以维持较小的波动。
    结论 本研究提出的基于预测PID的溶解氧调控方法具有响应快速,抗干扰能力强,PID参数可自适应调节的特性,为工厂化水产养殖的DO精准调控提供了可靠的解决方案。

     

    Abstract: Water quality is critical for aquaculture, with dissolved oxygen (DO) as a key parameter directly impacting organism survival, growth, and farming efficiency. In high-density intensive systems, frequent use of liquid oxygen for aeration to maintain adequate DO increases costs. PID controllers are widely used for DO control due to their simple structure, high robustness, and fast response. However, fixed parameters struggle with nonlinear systems, often causing performance degradation or instability. Researchers have integrated intelligence into PID for online parameter tuning and combined predictive technology to anticipate system dynamics, enhancing adaptability and reducing delays. This study first established a transfer function model of aeration flow vs. DO concentration using experimental data, obtaining the DO control system model. It then proposed an FSSCINET-QNN-PID controller—combining a fast-slow learning sample convolutional interactive network (FSSCINET) for prediction with a quantum neural network (QNN) for PID parameter tuning-to improve response speed and anti-interference capability. FSSCINET enhances DO prediction by integrating adapters (dynamic parameter adjustment) and memory modules (capturing periodic changes) into SCINET, leveraging convolution and interaction for time-series data. QNN enables online updates of PID parameters to handle nonlinear dynamics. A DO monitoring system in industrial aquaculture validated the model. Results showed FSSCINET outperformed SCINET and FSNET, with MSE (0.037 5 mg/L), MAE (0.155 4 mg/L), and RMSE (0.193 7 mg/L). FSSCINET-QNN-PID reduced adjustment time to 1 642 s with smaller overshoot compared to PID and QNN-PID, stabilizing faster with minimal fluctuations. This study can provide a new idea for automatic regulation of DO in factory farming.

     

/

返回文章
返回